
Programming for TiSEM Essential Digital Skills

Pieter Kleer Christoph Walsh

ii

Table of contents

1 About 1
1.1 Welcome . 1
1.2 What is a Programming Language? 1
1.3 Why Python? . 2

2 Getting Started 5
2.1 Installing Anaconda . 5
2.2 Spyder . 7

2.2.1 Python Console . 7
2.2.2 Python Scripts . 8

2.3 Code Snippets in This Book . 10

3 Python as a Calculator 11
3.1 Addition, Subtraction, Multiplication and Division 11
3.2 Troubleshooting: “Escaping” in Python 12
3.3 Exponentiation (Taking Powers of Numbers) 12
3.4 Absolute value . 13
3.5 Square Roots . 15
3.6 Exponentials . 17
3.7 Logarithms . 19
3.8 Integer Division and The Modulus Operator 21

4 Variables and Data Types for Single Values 23
4.1 Variables . 23

4.1.1 Assigning Values to Variables 23
4.1.2 Rules for Naming Variables 24

4.2 Common Data Types for Single Values 25
4.2.1 Integers . 25
4.2.2 Floating-Point Numbers 25
4.2.3 Strings . 25
4.2.4 Boolean Values . 26

4.3 Logical and Comparison Operators 27
4.3.1 Logical Operators . 27

iii

iv TABLE OF CONTENTS

4.3.2 Comparison Operators . 28
4.4 Type Conversion . 29

5 Data Types for Multiple Values 33
5.1 Introduction . 33
5.2 Lists . 33

5.2.1 List Operations . 34
5.2.2 List Indexing . 34
5.2.3 List Slicing . 35
5.2.4 List Methods . 36
5.2.5 Iterating over Items in a List 37
5.2.6 List Comprehensions . 38
5.2.7 List Membership . 39
5.2.8 Copying Lists . 39

5.3 Tuples . 41
5.3.1 Tuple Assignment . 41

5.4 Dictionaries . 42
5.5 Sets and Frozen Sets . 43

6 Defining Functions and Conditional Execution 45
6.1 Introduction . 45
6.2 Structure of a Function . 45
6.3 Commenting in Python . 46
6.4 Conditional Execution . 47

6.4.1 If-Else Statements . 47
6.4.2 If-Else If-Else Statements 48
6.4.3 While Loops . 49

7 Introduction to NumPy 53
7.1 Introduction . 53
7.2 Three Example Problems . 53

Example 1 . 53
Example 2 . 54
Example 3 . 55

7.3 Importing the NumPy Module 56
7.4 Solving the Example Problems with NumPy 56

Example 1 . 56
Example 2 . 56
Example 3 . 57

7.5 Matrix Operations . 57

8 Mathematics and plotting 61
8.1 Root finding . 61
8.2 Minimization . 66
8.3 Visualization . 69

TABLE OF CONTENTS v

9 Data handling with Pandas 81
9.1 Data frames . 81

9.1.1 Accessing . 82
9.1.2 Editing . 86
9.1.3 Adding data . 88

9.2 Mathematical operations . 89
9.3 Importing and exporting data . 92

10 Object oriented programming 97
10.1 Attributes . 98
10.2 Methods . 99

10.2.1 Input arguments . 100
10.2.2 Updating attributes . 101
10.2.3 Overview . 103

10.3 Inheritance . 104
10.4 Mathematical example . 106

10.4.1 Methods . 108
10.4.2 Plotting method . 110
10.4.3 Overview . 112

11 Errors and debugging 115
11.1 Error types . 115

11.1.1 Syntax error . 115
11.1.2 Runtime error . 116
11.1.3 Logical error . 119

11.2 Exceptions . 120
11.3 Debugging . 124

11.3.1 Use print() statements 124
11.3.2 Use assert . 126
11.3.3 Use Spyder debugger . 127

vi TABLE OF CONTENTS

Chapter 1

About

1.1 Welcome
Welcome to the online “book” for the Programming Module of the TiSEM Minor
Essential Digital Skills. We will follow the content in this book during the
lectures and it is the basis of the material that will appear on the exam, so you
should read through this book carefully. Because this book is new, it is likely
that we will make some edits throughout the course.

Before we jump into coding with Python, we will start by discussing what
programming is at the most basic level and motivating why we are learning how
to code in Python in the first place.

1.2 What is a Programming Language?
Without getting into a complicated details, a programming language is a way
to communicate to a computer via written text in a way that the computer can
understand you so that you can instruct it to do various operations. This is
very different to how we often usually interact with a computer, which often
involves pointing and clicking on different buttons and menus with your mouse.

Knowing how to program is a very useful skill because you can automate repet-
itive tasks that would otherwise take you a very long time if you had to them
“by hand” (i.e. by clicking things with your mouse). For example, suppose you
work in a hotel in a city and you need to check how much your competitors
are charging for rooms on different days so that you can adjust prices to stay
competitive. Every day you have to go to all the different websites of the com-
peting hotels and take note of the prices in an Excel sheet. With programming,
what you could do instead is write code that tells the computer to automatically
visit those websites every day, record the hotel room prices, and put them into

1

2 CHAPTER 1. ABOUT

a dataset for you. This is a process called web scraping and can be done with
Python. This is just one example of the many ways programming languages
can automate repetitive tasks.

When humans speak to each other and someone makes a grammar mistake, it
usually isn’t a big deal. We usually know what they mean. But if you make
a “syntax error” in a programming language, it won’t understand what you
mean. The computer will throw an error. What is worse still is a “semantic
error” which is when the computer runs your code without an error but does
something you didn’t want it to do. Therefore we need to be very careful when
writing in a programming language.

1.3 Why Python?
There are many different programming languages out there: C, C++, C#, Java,
JavaScript, R, Julia, Stata, MATLAB, Fortran, Ruby, Perl, Rust, Go, Lua, Swift
- the list goes on. So why should we learn Python over these other alternatives?

The best programming language depends on the task you want to accomplish.
Are you building a website, writing computer software, creating a game, or
analyzing data? While many languages could perform all of these tasks, some
languages excel in some of them. In this course our goal is to learn basic
programming techniques required for data science, and Python is by far the
most popular programming language for this task. But it’s not only useful for
that. It is also often used in web development, creating desktop applications
and games, and for scientific computations. It is therefore a very versatile
programming language that can complete a very wide range of tasks.

Python is also completely free and open source and can run on all common
operating systems. This means you can share your code with anyone and they
will be able to run it, no matter what computer they are on or where they are
in the world.

There is also a very large active community that creates packages to do a wide-
range of operations, keeping Python up to date with the latest developments.
For example, excellent community help is available at Stackoverflow, so if you
Google how to do something in Python most likely that question has already
been answered on Stackoverflow. Funnily enough, a key skill to develop with
programming is how to formulate your question into Google to land on the right
Stackoverflow page. More recently, Chat GPT has become a very useful resource
for Python. Chat GPT can write excellent Python code and also explains all
the steps it takes, so I encourage you to use it to help you learn. Although keep
in mind it won’t be available to you in the exam, so don’t become too reliant
on it!

These days employers are increasingly looking to hire people with programming
skills. Knowing how to program in Python - one of the most commonly used

https://stackoverflow.com/

1.3. WHY PYTHON? 3

languages by companies - is therefore a very valuable addition to your CV.

4 CHAPTER 1. ABOUT

Chapter 2

Getting Started

In this chapter we will learn how to install Python and run our very first com-
mand.

2.1 Installing Anaconda
The easiest way to install Python is by installing Anaconda. You can do this
by visiting https://www.anaconda.com/download.

You should see this page:

Figure 2.1: Anaconda Download Page

You should click the “Skip registration” button (although feel free to register if

5

https://www.anaconda.com/download

6 CHAPTER 2. GETTING STARTED

you like). You will then see the following page:

Figure 2.2: Anaconda Download Page

You should then click on the “Download” button. Mac users will see a Mac logo
instead.

After downloading the file, click on it to install it. Follow the installation wizard
and keep all the default options during installation.

After installation you will see a number of new applications on your computer.
These are:

• Spyder. This is a computer application that allows you to write Python
scripts and execute them to see the output. Such an application is called
an Integrated Desktop Environment (IDE). We will see how to use this
below.

• Jupyter Notebook. This is a web application that allows you to write a
notebook (like a report) with text and Python code snippets with output.
We will learn how to use this application later in this course.

• Anaconda Prompt. This is a way to manage and update packages from
the command line. Packages are collections of modules that give Python
more functionality, allowing you to perform different types of tasks more
easily. All the packages that we will need for this course are installed by
default when we install Anaconda, so we will not need to use this in this
course.

• Anaconda Navigator. This is a graphical user interface for the Anaconda
prompt. This essentially allows you to manage your packages without
having to learn the different commands required by the Anaconda prompt.

2.2. SPYDER 7

We won’t need to use this application in this course.

2.2 Spyder

Open the Spyder program installed by Anaconda. You should see an application
that looks like this:

Figure 2.3: Spyder

2.2.1 Python Console

In the bottom right pane you see a console with IPython. IPython is short for
Interactive Python. We can type Python commands into this console and see
the output directly. To find 1 + 1 in Python, we can use the command 1+1,
similar to how we would do it in Excel or in the Google search engine. Let’s
try this out in the console. First, click on the console to move the cursor there.
Then type 1+1 and press Enter. We will see the output 2 on the next line next
to a red Out [1]:

8 CHAPTER 2. GETTING STARTED

Figure 2.4: IPython Console

The red Out [1] means this is the output from the first line of input (after the
green In [1]). The second command will have input In [2] and output Out
[2].

2.2.2 Python Scripts
Typing commands directly into the IPython console is fine if all you want to
do is try out a few different simple commands. However, when working on a
project you will often be executing many commands. If you were to do all of
this in the interactive console it would be very easy to lose track of what you
are doing. It would also be very easy to make mistakes.

Writing your commands in Python scripts is a solution to this problem. A
Python script is a text file with a .py extension where you can write all of your
commands in the order you want them run. You can then get Spyder to run the
entire file of commands. You can also ask it to only run part of the file. This
has many advantages over typing commands into the console:

• If you have run 10 commands to calculate something and then afterwards
you decide to change what happened in one of the earlier commands, you
would often have type all the commands again. In a script you would just
need to edit the line with that command. So scripts can save you a lot of
time.

• You or anyone else can easily reproduce your work by re-running the
Python script.

• By having all the commands in a script you can more easily spot any
mistakes you might have.

• It is a way of saving your work.

Therefore it’s best practice to write your code in scripts. In the exam, you will
also have to supply your script with your answers.

In Spyder, in the left pane you see a file open called temp.py. This is an example
Python script. We can ignore what is written in the first 6 lines of the script.

2.2. SPYDER 9

We can add our 1 + 1 command to the bottom of the script like this and save
it:

Figure 2.5: Python Script

In the Toolbar there are several ways to run this command from the script. For
example, you can run the entire file, or run only the current line or selected
area. If the cursor is on the line with 1 + 1 and we press the “Run selection
or current line” button, then we will see the command and output appear in
the IPython console, just like how we typed it there before. Using the script,
however, we have saved and documented our work.

If you try run the entire file, you will see runfile('...') in the IPython
console with the ... being the path to the Python script you are running.
However, you don’t see a 2 in the output. This is because when running an
entire file, Python does not show the output of each line being run. To see the
output of any command we need to put it inside the print() function. We can
change our line to print(1 + 1) to see the output when running the entire file:

10 CHAPTER 2. GETTING STARTED

Figure 2.6: Using the print() function

When you run the entire file you should now see a 2 below the runfile('...')
command.

We now know how to write and run Python scripts! In the next chapter we will
learn more Python commands.

2.3 Code Snippets in This Book
In this book, we won’t always show screenshots like we did above. Instead we
will show code snippets in boxes like this:

1 + 1

2

The part that is code will be in color and there will be a small clipboard icon
on the right which you can use to copy the code to paste into your script to be
able to experiment with it yourself. The output from the code will always be in
a separate gray box below it (without a clipboard icon).

Chapter 3

Python as a Calculator

In this chapter we will learn how to use Python as a calculator. In Chapter 2
we already saw how to calculate 1 + 1. We will now go through some different
operations. We will also learn about functions and their arguments along the
way, which we will be be using again and again throughout the rest of this
course.

3.1 Addition, Subtraction, Multiplication and
Division

We start with the most basic operations. Addition, subtraction, multiplication
and division are given by the standard +, -, * and / operators that you would
use in other programs like Excel. For example:

Addition:

2 + 3

5

Subtraction:

5 - 3

2

Multiplication:

2 * 3

6

Division:

3 / 2

11

12 CHAPTER 3. PYTHON AS A CALCULATOR

1.5

It is also possible to do multiple operations at the same time using parentheses.
For example, suppose we wanted to calculate:

2 + 4
4 × 2 = 6

8 = 0.75

We can calculate this in Python as follows:

(2 + 4) / (4 * 2)

0.75

3.2 Troubleshooting: “Escaping” in Python
Suppose by accident you left out the closing parentheses above. You typed (2
+ 4) / (4 * 2 and Enter. You don’t see the output but instead see

In [1]: (2 + 4) / (4 * 2
...:

Python did not run the command, but it also did not give an error. What
happened is that because there was no closing parenthesis Enter moved to a
new line instead of executing the command. That’s why we see the ...:. To
“Escape” this situation, you just need to press the Ctrl+C button. In general,
if anything strange happens in Python and you get stuck, you can always press
Ctrl+C in the console to escape the current command.

3.3 Exponentiation (Taking Powers of Num-
bers)

𝑥𝑛 multiplies 𝑥 by itself 𝑛 times. For example, 23 = 2 × 2 × 2 = 8. In Python
we use ** to do this:

2 ** 3

8

Be very careful not to use ^ for exponentiation. This actually does a very
different thing that we won’t have any use for in this course.1

1In fact, there exist many root finding methods. A very famous one is Newton’s method
developed by Isaac Newton, a famous sciencist that you might have heard of. The reason
why there are so many root finding methods is that some work better than others on a given
function 𝑓. There are other ways to do root finding in Python that allow you to specify a root
finding method yourself, but this is a more advanced topic beyond the scope of this course.

3.4. ABSOLUTE VALUE 13

3.4 Absolute value
Taking the absolute value turns a negative number into the same number with-
out a minus sign. It has no effect on positive numbers.

In mathematical notation we write |𝑥| for the absolute value of 𝑥. The formal
definition is:

|𝑥| = {𝑥 if 𝑥 ≥ 0
−𝑥 otherwise

Here are some examples:

• | − 2| = 2
• |3| = 3.

This is what the function looks like when we plot it for different 𝑥:

import numpy as np
import matplotlib.pyplot as plt

Define the x range
x = np.linspace(-10, 10, 400)

Define the absolute value function
y = np.abs(x)

Create the plot
plt.figure(figsize=(6, 4))
plt.plot(x, y, label='y = |x|')

Add labels and title
plt.title('Absolute Value Function')
plt.xlabel('x')
plt.ylabel('y')

Add a grid
plt.grid(True)

Add a legend
plt.legend()

Show the plot
plt.show()

14 CHAPTER 3. PYTHON AS A CALCULATOR

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10
y

Absolute Value Function

y = |x|

We’ll learn how to make plots like this later in this course, but if you want to
see the code generating it you can click on the button “Show code generating
the plot below”.

In Python we can calculate absolute values with:

abs(-2)

2

abs(3)

3

Taking the absolute value in Python involves using what is called a function.
Functions are used by calling their names and giving the arguments to the
function in parentheses. When we do abs(-2), abs is the name of the function
and -2 is the argument.

In many ways the functions in Python work a lot like the functions in Excel,
just they might have different names or be used a bit differently. For example,
in Excel you write =ABS(-2) to take the absolute value of −2. The argument is
the same, and the function name only differs in that in Excel you need to use
capital letters whereas in Python you use lowercase letters (in addition, Excel
requires you to put an = before the function name).

When using functions it is helpful to read their help pages. You can look at this
by typing help(abs) in the Console and pressing Enter. We then see:

3.5. SQUARE ROOTS 15

Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

This tells us that abs() takes a single argument and returns the absolute value.2

We will be using many different functions and it’s a good habit of to look at
their help pages. The help pages will be available to you in the Exam.

3.5 Square Roots
The square root of a number 𝑥 is the 𝑦 that solves 𝑦2 = 𝑥. For example, if 𝑥 = 4,
both 𝑦 = −2 and 𝑦 = 2 solve this. The principal square root is the positive 𝑦
from this.

Here is what the square root function looks like for different 𝑥:

import numpy as np
import matplotlib.pyplot as plt

Define the x range (positive values because np.sqrt() not defined for negative
values)
x = np.linspace(0, 10, 400)

Define the square root function
y = np.sqrt(x)

Create the plot
plt.figure(figsize=(6, 4))
plt.plot(x, y, label='y = √x')

Add labels and title
plt.title('Square Root Function')
plt.xlabel('x')
plt.ylabel('y')

Add a grid
plt.grid(True)

Add a legend
2The forward slash in abs(x, /) marks the end of the positional-only arguments in the

function. The abs() function takes only one argument, so you can think of this slash as
meaning there is only one argument to abs(). Some functions like the math.log() function
that we will see below have two arguments (the number we are taking the log of and the base)
and the position (order) of the arguments we provide matter. Other functions, such as the
print() function we have already encountered, allow you to provide arguments by a keyword
(see help(print) for these).

16 CHAPTER 3. PYTHON AS A CALCULATOR

plt.legend()

Show the plot
plt.show()

0 2 4 6 8 10
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Square Root Function
y = x

The principal square root a number is equal to the number exponentiated by 1
2 :

√𝑥 = 𝑥 1
2

9 ** (0.5)

3.0

We can follow a very similar approach to above to get the cubed root of a
number, such as: 3√8 = 8 1

3 = 2:

In Python:

8 ** (1/3)

2.0

Python also has a square root function, but it is not built in. We need to load
this function by loading the module math. A module is a collection of additional
functions and other objects that we can load in our Python script. The module
math contains many mathematical functions, including the sqrt() function.

3.6. EXPONENTIALS 17

To load the math module, we need to include import math in our script before
executing any of its functions. To run the sqrt() function from the math
module, we need to type math.sqrt(). This “dot” notation means we use the
sqrt() function within the math module.

To get
√

9 then we can do:

import math
math.sqrt(9)

3.0

To view the help page math.sqrt(), we can use help(math.sqrt).

If you only want to use the sqrt() function from the math module, you could
alternatively import the function the following way:

from math import sqrt
sqrt(9)

3.0

This way you don’t need to type math.sqrt() every time you want to take the
square root, and only need to type sqrt(). However, it is generally preferred
practice to import the math module using import math and use the function
with math.sqrt(). This makes the code clearer and easier to understand.

3.6 Exponentials
A very important function in mathematics and statistics is the exponential func-
tion. The definition of exp (𝑥), or 𝑒𝑥, is given by:

𝑒𝑥 = lim
𝑛→∞

(1 + 𝑥
𝑛)

𝑛

Note: you don’t need to know or remember this definition for the exam. You
only need to know how to calculate the exponential function in Python.

This is what the function looks like:

import numpy as np
import matplotlib.pyplot as plt

Define the x range
x = np.linspace(-2, 2, 400)

Define the exponential function
y = np.exp(x)

Create the plot

18 CHAPTER 3. PYTHON AS A CALCULATOR

plt.figure(figsize=(6, 4))
plt.plot(x, y, label='y = e^x')

Add labels and title
plt.title('Exponential Function')
plt.xlabel('x')
plt.ylabel('y')

Add a grid
plt.grid(True)

Add a legend
plt.legend()

Show the plot
plt.show()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

5

6

7

y

Exponential Function
y = e^x

In Python we can use the exp() function from the math module to calculate
the exponential of any number:

math.exp(1)

2.718281828459045

3.7. LOGARITHMS 19

3.7 Logarithms

Another common mathematical function is the logarithm, which is like the re-
verse of exponentiation.

The log of a number 𝑥 to a base 𝑏, denoted log𝑏 (𝑥), is the number of times
we need to multiply 𝑏 by itself to get 𝑥. For example, log10 (100) = 2, because
10 × 10 = 100. We need to multiply the base 𝑏 = 10 by itself twice to get to
𝑥 = 100.

A special logarithm is the natural logarithm, log𝑒(𝑥), which is the logarithm to
the base exp(1) = 𝑒1 ≈ 2.7183. This is also written as ln(𝑥).

This is what the function looks like:

import numpy as np
import matplotlib.pyplot as plt

Define the x range (positive values only, since ln(x) is undefined for non-positive x)
x = np.linspace(0.1, 10, 400) # Start from 0.1 to avoid log(0), which is undefined

Define the natural logarithm function
y = np.log(x)

Create the plot
plt.figure(figsize=(6, 4))

plt.plot(x, y, label='y = ln(x)')

Add labels and title
plt.title('Natural Logarithm Function')
plt.xlabel('x')
plt.ylabel('y')

Add a grid
plt.grid(True)

Add a legend
plt.legend()

Show the plot
plt.show()

20 CHAPTER 3. PYTHON AS A CALCULATOR

0 2 4 6 8 10
x

2

1

0

1

2
y

Natural Logarithm Function
y = ln(x)

In Python we use the log() function from the math module to calculate the
natural logarithm:

import math
math.log(1)

0.0

What if we want to calculate the logarithm to a base other than 𝑒? If we look
at the help page for log() using help(math.log), we see:

Help on built-in function log in module math:

log(...)
log(x, [base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

We can see that the log() function can take 2 arguments:

• x: the number we want to take the log of.
• base: the base with respect to which the logarithms are computed. The

default is math.e which equals the value of 𝑒 ≈ 2.718. Because this argu-
ment is contained in a square bracket, it means it is an optional argument.
If we don’t provide it it will use the default.

3.8. INTEGER DIVISION AND THE MODULUS OPERATOR 21

This is the first time that we have seen a function with more than one argument.
Earlier when we used the math.log() to calculate the natural logarithm we only
used one argument because we used the default setting for the base. But when
we want to use a base other than 𝑒, we need to specify it.

To calculate log10 (100) in Python is then done as follows:

import math
math.log(100, 10)

2.0

We write both arguments into the math.log() function, separated by commas.

The math module contains many more mathematical functions. To see all the
functions available in the math module, we can use the command dir(math).
You will see many familiar mathematical functions, such as the trigonometric
functions sin(), cos(), and tan().

3.8 Integer Division and The Modulus Operator
When we divide 7 by 3 we get 2 1

3 . We could alternatively say that “7 divided
by 3 equals 2 with remainder 1”. When programming it is often useful to get
these numbers. The tutorial exercises will have several examples of this!

We can perform “integer division” with the // operator. This always returns
the fraction rounded down to the nearest whole number:

7 // 3

2

To get the remainder we use the modulus operator %:

7 % 3

1

Together then 7/3 is 2 with remainder 1.

One thing to note is that integer division with negative numbers doesn’t round
to the integer closest to zero, but always down. So:

-7 // 3

-3

and:

7 // -3

-3

both give −3 and not −2

22 CHAPTER 3. PYTHON AS A CALCULATOR

Chapter 4

Variables and Data Types
for Single Values

In this chapter we will learn about variables and data types for single values. In
Chapter 5 we will learn about data types that can contain multiple values.

4.1 Variables
In Python we can assign single values to variables and then work with and
manipulate those variables.

4.1.1 Assigning Values to Variables
Assigning a single value to a variable is very straightforward. We put the name
we want to give to the variable on the left, then use the = symbol as the assign-
ment operator, and put the value to the right of the =. The = operator binds a
value (on the right-hand size of =) to a name (on the left-hand side of =).

To see this at work, let’s set 𝑥 = 2 and 𝑦 = 3 and calculate 𝑥 + 𝑦:

x = 2
y = 3
x + y

5

In Spyder there is a “Variable Explorer” in the top-right pane to see the variables
we have created:

23

24 CHAPTER 4. VARIABLES AND DATA TYPES FOR SINGLE VALUES

Figure 4.1: Variable Explorer in Spyder

We can see that x has a value 2 and y has a value 3.

When we assign 𝑥 = 2, in our code, the value is not fixed forever. We can assign
a new value to x. For example, we can assign the number 6 to x instead:

x = 6
x + y

9

Finally, you cannot set 𝑥 = 2 with the command 2 = x. That will result in an
error. The name must be on the left of = and the value must be on the right of
=.

4.1.2 Rules for Naming Variables
Variable names can be multiple letters long and can contain underscores (_).
Underscores are useful because variable names cannot contain spaces and so we
can use underscores to represent spaces. Variable names can contain numbers
but they cannot start with one. For example x1 and x_1 are legal names in
Python, but 1x is not. There are 35 keywords that are reserved and cannot
be used as variable names because they are fundamental to the language. For
example, we cannot assign a value to the name True, because that is a keyword.
Below is the list of all keywords.1 We will learn what many of these keywords
are later in this course and how to use them.

1In fact, there exist many root finding methods. A very famous one is Newton’s method
developed by Isaac Newton, a famous sciencist that you might have heard of. The reason
why there are so many root finding methods is that some work better than others on a given
function 𝑓. There are other ways to do root finding in Python that allow you to specify a root
finding method yourself, but this is a more advanced topic beyond the scope of this course.

4.2. COMMON DATA TYPES FOR SINGLE VALUES 25

import keyword
print(keyword.kwlist)

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

4.2 Common Data Types for Single Values
4.2.1 Integers
You may have noticed that the “Variable Explorer” in Spyder had a “Type”
column. For x and y this was int which means “integer”. Integers are whole
numbers that can also be negative. We can also check the type of a variable
using the type() function:

type(x)

int

4.2.2 Floating-Point Numbers
Numbers that are not whole numbers have the type float, which stands for
floating-point number:

type(1.2345)

float

All the operations we learned about in Chapter 3 also work with floating-point
numbers. For example:

1.2 * 3

3.5999999999999996

You will notice that we don’t get 3.6 like we expected, but instead something
very very close but slightly different to 3.6. This is because of how floating-point
numbers are represented internally by the computer. The number is split into an
integer with a fixed degree of precision and an exponential scaler. For example
1.2 is the same as 12×10𝑒−1, so the computer needs two integers: 12 and -1 (the
exponent) to represent 1.2. Because this process involves some approximations
when we perform arithmetic operations on them we can lose some accuracy.
However, for most purposes 3.5999999999999996 is close enough to 3.6.

4.2.3 Strings
Python can also work with text in the form of strings. Text in Python needs to
be wrapped in quotes. These can be either single quotes (') or double quotes
("), provided they match.

type('Hello world')

26 CHAPTER 4. VARIABLES AND DATA TYPES FOR SINGLE VALUES

str

type("This is a string")

str

This str means it is a “string” which is a sequence of individual characters.

One thing to be careful with strings is that if you have a string that contains
double quotes you have to wrap it in single quotes and vice versa:

quote = 'Descartes said "I think, therefore I am" in 1637'
apostrophe = "Don't wrap this with single quotes!"

If you find yourself in the unusual situation with a string with both single and
double quotes, you can wrap them in triple single quotes ('''):

quote_with_apostrophe = '''As they say, "Don't judge a book by its cover"'''

Another thing to be careful with strings is that numbers surrounded by quotes
are strings and not numbers:

type('1.2')

str

We can use some of the operators for numbers on strings, but they do very
different things. The + operator combines strings:

a = 'Hello, '
b = 'world'
a + b

'Hello, world'

And the * operator repeats strings:

a = 'Hello! '
a * 3

'Hello! Hello! Hello! '

4.2.4 Boolean Values
In programming it is often useful to work with variables that are either true or
false. Therefore Python has a special data type for this called the Boolean data
type. This is named after George Boole who was a mathematics professor in
Ireland in the 1800s.

The Boolean values are either True or False. The words must be capitalized
and spelled exactly this way. These are two of Python’s keywords.

a = True
b = False
type(a)

4.3. LOGICAL AND COMPARISON OPERATORS 27

bool

True and False are 2 of the keywords that cannot assign values to. Try 2 =
True yourself and see the error that you get.

4.3 Logical and Comparison Operators
4.3.1 Logical Operators
Boolean values have their own operations: and, or and not. These are called
logical operators. These work as follows:

• a and b is True if both a and b are True. Otherwise it is False (if either
or both of a or b are False). Here are all the possible combinations:

a b a and b

True True True
True False False
False True False
False False False

• a or b is True if either a or b (or both) are True. Otherwise it is False
(if both a and b are False). Here are all the possible combinations:

a b a or b

True True True
True False True
False True True
False False False

• not a is True if a is False and is False if a is True. The not operator
flips the value. Here are all the possible combinations:

a not a

True False
False True

Let’s try them out on two specific values a and b, where a is True and b is
False:

a = True
b = False
a and b

28 CHAPTER 4. VARIABLES AND DATA TYPES FOR SINGLE VALUES

False

This is False because we need both a and b to be True.

a or b

True

This is True because at least one of a or b is True.

not a

False

This is False because a is True. It flips the value.

4.3.2 Comparison Operators
Python has operators to check if one number is equal to, not equal to, greater
than (or equal to), or less than (or equal to) another number. It checks the
(in)equality and returns True or False depending on the result.

To check if 𝑎 = 𝑏, we use the == operator:

a = 3
b = 2
a == b

False

𝑎 ≠ 𝑏, so we get False. Be careful to use two equal symbols and not one. If we
did a = b, it would just reassign to a the value of b (2):

a = 3
b = 2
a = b
a

2

To check if 𝑎 ≠ 𝑏, we use the != operator (which is supposed to look like the ≠
symbol):

a = 3
b = 2
a != b

True

This is True, because a and b are not equal.

To see if 𝑎 > 𝑏, we use > and to see if 𝑎 ≥ 𝑏 we use a >= b:

4.4. TYPE CONVERSION 29

a = 3
b = 2
a >= b

True

We get True because 𝑎 ≥ 𝑏.

To see if 𝑎 < 𝑏, we use < and to see if 𝑎 ≤ 𝑏 we use a <= b:

a = 3
b = 2
a <= b

False

We get False because 𝑎 ≱ 𝑏.

4.4 Type Conversion
We can sometimes convert objects between int, float, str and bool. Some-
times this conversion is not so intuitive so you need to be careful and know how
it works.

If we assign 𝑥 = 1, it will automatically be made an int:

x = 1
type(x)

int

But we can convert x to a float using the float() function. Let’s assign y to
be x as a float:

y = float(x)
type(y)

float

y

1.0

We can see that y is not 1 but 1.0. The .0 helps us recognize that this is a
float.

We can also convert the integer to a string:

z = str(x)
type(z)

str

z

30 CHAPTER 4. VARIABLES AND DATA TYPES FOR SINGLE VALUES

'1'

The quotes around the 1 helps us recognize that this is a string.

Finally we can also convert from a float to a string:

str(y)

'1.0'

If you have an integer stored as a string, we can convert it back to an integer:

int('1')

1

Or you can convert it to a float:

float('1')

1.0

And if a float is stored as a string, we can convert it back to a float:

float('1.5')

1.5

However, it is not possible to convert '1.5' to an integer - that will return an
error. Similarly you cannot convert strings with characters to integers or floats.

We can also convert floats to integers:

int(1.0)

1

If we try to convert a float that isn’t a whole number to an integer it will always
take the closest integer to zero. For positive numbers this means it always
rounds down:

int(1.1)

1

int(1.9)

1

And for negative numbers it always rounds up:

int(-2.1)

-2

int(-2.9)

-2

4.4. TYPE CONVERSION 31

The Boolean values True and False can be converted to integers, floats and
stringers. True becomes 1, 1.0 and 'True' and False becomes 0, 0.0 and
'False', respectively. We can also convert integers 1 and 0 back to Boolean:

bool(1)

True

bool(0)

False

However, if we try convert strings to Boolean we get some unintuitive results.
For example:

bool('0')

True

bool('False')

True

Non-empty strings always return True. Only empty strings return False:

bool('')

False

This is an example of when a programming language does something unintuitive.
Therefore when writing a longer program you really need to be sure what each
line is doing, otherwise your program will do something unexpected.

32 CHAPTER 4. VARIABLES AND DATA TYPES FOR SINGLE VALUES

Chapter 5

Data Types for Multiple
Values

5.1 Introduction
In Chapter 4 we learned about the int, float, str and bool data types, which
all had single values. But we often have to deal with many values. For example,
suppose you wanted to analyze the past daily sales of a company in recent years.
It would not be very convenient to assign each of the hundreds of values of
sales to different variables and work with them. Python has other data types
available to deal with multiple values: lists, tuples, dictionaries, sets and frozen
sets. These will be the focus of this chapter.

In later chapters we will also see that there are Python modules that have other
data types. In this chapter we will focus on the data types that come built in.

5.2 Lists
A very common way to store a sequence of values (which could be integers,
floats, strings or Booleans), is in a list. You can create a list by putting the
values in between square brackets, separated by commas:

a = [2, 4, 6]
a

[2, 4, 6]

Lists can also be composed of floats, Booleans, or strings, or even a combination
of them:

a = [1, 1.1, True, 'hello']

33

34 CHAPTER 5. DATA TYPES FOR MULTIPLE VALUES

Lists can even have other lists as elements:

a = [1, 2, [3, 4]]

Although we see 4 numbers, this list actually has only 3 elements:

len(a)

3

where the len() function returns the length of its argument. The [3, 4] is
actually considered one element and is itself a list. This kind of a list is called
a nested list.

5.2.1 List Operations
If we use the + operator on lists it just creates a longer list with one appended
to the other:

a = [2, 4, 6]
b = [8, 10]
a + b

[2, 4, 6, 8, 10]

If we use the * operator it repeats the list:

a = [2, 4, 6]
a * 3

[2, 4, 6, 2, 4, 6, 2, 4, 6]

We cannot use the - and / operators on lists. In these ways lists behave like
strings.

5.2.2 List Indexing
Lists are ordered so the order in which we place the elements matters. To
extract a particular value from a list based on its position in the list we can use
a method called indexing. If we want the first element of the list we can extract
it with a[0]:

a[0]

2

The 0 here is the index. It means to take element 0 from the list. In Python
and several other programming languages (like C and C++), counting starts at
0 instead of 1. So element 0 is actually the 1st element. This is something that
might take some getting used to, so be careful when using indexing.

Even though the list has 3 elements, the last element is extracted with a[2]:

a[2]

5.2. LISTS 35

6

If you try to do a[3] you get an IndexError saying the list index is out of
range.

We can also use negative indexing to extract elements from the end of a list.
For example, to get the last element of a list a we can use a[-1], to get the
2nd-last element we can use a[2], and so on:

a = [1, 2, 3, 4, 5, 6]
a[-1]

6

a[-2]

5

Indexing like this also works for strings, and many other objects with multiple
values. For example, to get the first character in a string we can get the value
at index 0:

a = 'hello'
a[0]

'h'

We can also use indexing to change values in a list:

a = [2, 4, 6]
a[0] = 8
a

[8, 4, 6]

Because lists have this property, we say they are mutable. This is unlike strings
which are immutable. You can’t change a character in a string using indexing
(try it out with the commands a = 'hello' and a[0] = g).

5.2.3 List Slicing
To get all elements starting from 1 up to but not including index 3 (the 2nd
and 3rd element) we can do:

a = [1, 2, 3, 4, 5]
a[1:3]

[2, 3]

To get all elements starting from index 2 (the 3rd element onwards) we can do:

a[2:]

[3, 4, 5]

36 CHAPTER 5. DATA TYPES FOR MULTIPLE VALUES

To get all elements up to but not including index 2 (the 1st and 2nd element)
we can do:

a[:2]

[1, 2]

Finally, the following just returns the original list:

a[:]

[1, 2, 3, 4, 5]

5.2.4 List Methods
Lists, like many objects in Python, have methods. A method in Python is
like a function but instead of using the object as an argument to the function,
we apply the function to the object. We’ll see what we mean by this with an
example. Suppose we wanted to add another number to our list at the end, like
the number 8. Instead of recreating the entire list with a = [2, 4, 6, 8], we
can append 8 to the end of the list using the append() method. Methods are
invoked by placing them after the object separated with a . like this:

a = [2, 4, 6]
a.append(8)
a

[2, 4, 6, 8]

Notice that we didn’t need to assign the output of append() to an object with
=. It altered a in place. This is what the method does.

To remove an element from a list we can use the pop() method. For example,
to remove the 2nd element (element with index 1), we can do:

a = [2, 4, 6]
a.pop(1)
a

[2, 6]

Another list method is reverse() which reverses the ordering of the list:

a = [2, 6, 4]
a.reverse()
a

[4, 6, 2]

To sort a list ascending we can use sort():

a = [1, 3, 2]
a.sort()
a

5.2. LISTS 37

[1, 2, 3]

To see the full list of methods available for your list, you can use the command
dir(a).

Using the sort() method changes our original list. Sometimes we want to see
the sorted version of a list but then go back to the original ordering. In this case
you shouldn’t use the sort() method on the list but use the sorted() function
to create a sorted version of the list. The sorted() function returns its input
sorted:

a = [1, 3, 2]
b = sorted(a)
b

[1, 2, 3]

5.2.5 Iterating over Items in a List
A useful feature of a list is that we can iterate over each element, performing the
same operation or set of operations on each element one by one. For example,
suppose we wanted to see what the square of each element in the list was. We
can use what is called a for loop to do this. Here is how to code it:

a = [2, 4, 6, 8]
for i in a:

print(i ** 2)

4
16
36
64

In words, what is happening is “for all 𝑖 in the list 𝑎, print 𝑖2”. We use i as a
sort of temporary variable for each element in a. The next line then prints i **
2 which squares i. You will notice that the print() command is indented with
4 spaces. This is to tell Python that this command is part of the loop. When
there is code under the for loop that is not indented, Python interprets this as
not being part of the loop.

To understand this, compare the following two snippets, which are almost the
same except the first print('hello') is indented and the second is not:

a = [2, 4, 6, 8]
for i in a:

print(i ** 2)
print('hello')

4
hello
16

38 CHAPTER 5. DATA TYPES FOR MULTIPLE VALUES

hello
36
hello
64
hello

a = [2, 4, 6]
for i in a:

print(i ** 2)
print('hello')

4
16
36
hello

The first code prints 'hello' 3 times, and the second only once, even though
the code looks almost the same except for the indentations. This is because in
the first case, the indentation tells Python that that print() call is part of the
loop. In each iteration of the loop, we have to print the square of 𝑖 and print
hello. The loop iterates 3 times, so we see 'hello' 3 times.

In the second case, the lack of indentation tells Python that the print('hello')
is not in the loop. Python first finishes the loop (squaring each element of 𝑎 and
printing it). It only then gets to the next part of the code and prints 'hello'.

Therefore it is very important to be careful with indentation with Python. You
should indent with 4 spaces (not tabs) for content in a loop.

Another thing to note here is that a for loop is a situation where the code is
no longer running line-by-line from top to bottom. The code goes to the end
of the loop and if there are iterations remaining to be done it goes back to the
start of the loop. Only when it has completed all the iterations does it go to
the next line after the loop.

5.2.6 List Comprehensions
Suppose we wanted to save the square of each element of a into a new list called
b. One way to do that would be to create an empty list called b with b = [].
This is a list with no elements. Then we could use the for loop to append the
values to b, like this:

a = [2, 4, 6]
b = []
for i in a:
b.append(i ** 2)

b

[4, 16, 36]

5.2. LISTS 39

This works just fine, but the code is a bit “clunky”. Moreover, if your list is very
very large it would run very slowly. A cleaner and faster way to do this kind of
operation is by using list comprehensions.

a = [2, 4, 6]
b = [i ** 2 for i in a]
b

[4, 16, 36]

This is a very neat and compact way to create the new list. It also reads similar
to how we would describe what is happening: “make a list which is 𝑖2 for all
elements 𝑖 in the list 𝑎”.

5.2.7 List Membership
To see if an element is contained somewhere in a list, we can use the in operator:

a = [2, 4, 6]
4 in a

True

5 in a

False

4 is in a so we get True, but 5 is not so we get False.

5.2.8 Copying Lists
One thing to note about lists, which may be unexpected, is that if we create a
list a and set b = a, we are actually telling Python that a and b refer to the
same object, not just that they have the same values. This has the consequence
that if we change a that b will also change. For example:

a = [2, 4, 6]
b = a
a[0] = 8
b

[8, 4, 6]

We set b = a but otherwise perform no operations on b. We change the first
element of a (element 0) to 8, and the first element of b changes to 8 as well!

Often when we are programming we don’t want this to happen. We often want
to copy a list to a new one to perform some operations and leave the original
list unchanged. What we can do instead is set b equal to a[:] instead of a.
This way b won’t change when a changes:

40 CHAPTER 5. DATA TYPES FOR MULTIPLE VALUES

a = [2, 4, 6]
b = a[:]
a[0] = 8
b

[2, 4, 6]

Another way is to use the copy() method:

a = [2, 4, 6]
b = a.copy()
a[0] = 8
b

[2, 4, 6]

Because there are two different ways of copying objects with different conse-
quences, we have two different terms for them:

1. Deep copy: This copies a to b and recursively copies all of its elements,
resulting in a completely independent object.

2. Shallow copy: This copies a to b but does not recursively copy its elements.
Instead it only copies the references to the elements in a (like the address
for where in the computer’s memory those elements are stored). This
means that changes to elements of a will affect the elements of b.

The b = a example is a shallow copy and the b = a[:] example is like a deep
copy. However, it is not a full deep copy. Using a[:] or a.copy() only works if
our list is not nested. This method only takes a deep copy of the outermost list.
If we copy with a[:] or a.copy() to b with a nested listed and then change
an element inside one of the nested lists, then the copied object will change as
well. For example:

a = [2, 4, [6, 8]]
b = a[:]
a[2][1] = 5
b

[2, 4, [6, 5]]

b changes as well! The same happens with the copy() method:

a = [2, 4, [6, 8]]
b = a.copy()
a[2][1] = 5
b

[2, 4, [6, 5]]

To make a full deep copy which recursively copies the entire object, we can use
the deepcopy() function from the copy module:

5.3. TUPLES 41

import copy
a = [2, 4, [6, 8]]
b = copy.deepcopy(a)
a[2][1] = 5
b

[2, 4, [6, 8]]

5.3 Tuples
A tuple is another data type that is quite similar to a list. One important
difference, however, is that they are immutable. We cannot change individual
values of a tuple after they are created, and we cannot append values to a tuple.

We can create a tuple in Python using parentheses instead of square brackets:

a = (2, 4, 6)

Indexing and many other operations that work for lists also work with tuples.
We index them the same way as lists (using square brackets like a[0]) and we
can iterate over the items with for loops in the same way. However the list of
methods for tuples is much shorter. We cannot append or pop values because
the tuples are immutable.

5.3.1 Tuple Assignment
One useful thing we can do with tuples is tuple assignment. Suppose we have a
list x = ['a', 'b', 'c'] and we wanted to create 3 objects from this: x_0 =
'a', x_1 = 'b' and x_2 = 'c'. One way to do this is:

x = ['a', 'b', 'c']
x_0 = x[0]
x_1 = x[1]
x_2 = x[2]

But a much more elegant way to do this is using tuple assignment:

x = ['a', 'b', 'c']
(x_0, x_1, x_2) = x

This assigns 'a' to x_0, 'b' to x_1 and 'c' to x_2 all in one line.

This is especially useful if you have a function that returns multiple objects
and we want to assign each output to a different variable. For example, the
function divmod(a, b) gives the quotient and remainder from dividing a with
b. It essentially calculates a // b and a % b and returns a tuple with both
objects:

divmod(7, 3)

(2, 1)

42 CHAPTER 5. DATA TYPES FOR MULTIPLE VALUES

This means 7 divided by 3 is 2 with remainder 1. We can use tuple assignment
with the output to get:

(quotient, remainder) = divmod(7, 3)
quotient

2

remainder

1

5.4 Dictionaries
Another common built-in data type is a dictionary. A dictionary maps keys
to values, where the keys can be an immutable data type (usually an integer
or string) and the values can be any type, for example, single values, lists, or
tuples. For example, a company might have supplier IDs for its suppliers and
a dictionary mapping those IDs to the actual company name. In this case, the
company IDs are the keys and the company names are the values.

We could create a simple dictionary like this as follows:

suppliers = {100001 : 'ABC Ltd.', 100002 : 'EFG Ltd.'}

Dictionaries are created within curly brackets with the structure {key1 :
value1, key2 : value2, key3 : value3}.

To find a company name using the company ID we provide the key in the place
we would supply an index for a list or tuple:

suppliers[100001]

'ABC Ltd.'

Dictionaries are unordered, so we cannot do suppliers[0] to find the first
supplier. There is no first value in a dictionary.

We can also add new keys and values to the dictionary:

suppliers[100003] = 'HIJ Ltd.'
suppliers

{100001: 'ABC Ltd.', 100002: 'EFG Ltd.', 100003: 'HIJ Ltd.'}

We can also modify values:

suppliers[100003] = 'KLM Ltd.'
suppliers

{100001: 'ABC Ltd.', 100002: 'EFG Ltd.', 100003: 'KLM Ltd.'}

To get all the keys in a dictionary we can use the keys() method:

5.5. SETS AND FROZEN SETS 43

suppliers.keys()

dict_keys([100001, 100002, 100003])

And to get all the values in a dictionary we can use the values() method:

suppliers.values()

dict_values(['ABC Ltd.', 'EFG Ltd.', 'KLM Ltd.'])

Using a for loop with a dictionary implicitly iterates over the keys. So we can
loop over the keys of a dictionary in the following way:

for key in suppliers:
print('Supplier with ID ' + str(key) + ' is ' + suppliers[key])

Supplier with ID 100001 is ABC Ltd.
Supplier with ID 100002 is EFG Ltd.
Supplier with ID 100003 is KLM Ltd.

Finally, to create an empty dictionary we can use {}.

5.5 Sets and Frozen Sets
A set is another way to store multiple items into a single variable. Sets are
unordered and unindexed. This means you cannot extract individual elements
using their index like a list, nor by their key like a dictionary.

You can create a set by placing items (like integers or strings) inside curly
brackets ({}) separated by commas:

myset = {'apple', 'banana', 'cherry'}
myset

{'apple', 'banana', 'cherry'}

Sets cannot have duplicate items. It only keeps the unique values. For example,
suppose we provide 'cherry' twice:

myset = {'apple', 'banana', 'cherry', 'cherry'}
myset

{'apple', 'banana', 'cherry'}

It only keeps the first 'cherry'.

You are, however, able to add and remove elements to a set.

myset = {'apple', 'banana', 'cherry'}
myset.add('pear')
myset

{'apple', 'banana', 'cherry', 'pear'}

44 CHAPTER 5. DATA TYPES FOR MULTIPLE VALUES

myset = {'apple', 'banana', 'cherry'}
myset.remove('apple')
myset

{'banana', 'cherry'}

Converting a list to a set is useful if you want to get the list of unique elements:

fruits = ['apple', 'apple', 'apple', 'banana', 'cherry', 'banana']
set(fruits)

{'apple', 'banana', 'cherry'}

We can iterate over sets just like lists (with for i in myset). We can also
perform set operations on pairs of sets.

For example, for two sets 𝐴 and 𝐵, we can find 𝐴 ∩ 𝐵 (the set of elements
contained in both sets) using:

set_a = {1, 2, 4, 6, 8, 9}
set_b = {2, 3, 5, 7, 8}
set_a.intersection(set_b)

{2, 8}

The numbers 2 and 8 are the only numbers in both sets.

To find 𝐴 ∪ 𝐵 (the set of elements contained in either set) we can do:

set_a.union(set_b)

{1, 2, 3, 4, 5, 6, 7, 8, 9}

This gets all the numbers appearing in the two sets (dropping duplicates).

To find 𝐴 ∖ 𝐵 (the set of elements in 𝐴 not contained in 𝐵) we can do:

set_a.difference(set_b)

{1, 4, 6, 9}

1, 4, 6 and 9 are in 𝐴 and not in 𝐵. The number 2, for example, is not here
because that is also in 𝐵.

To create a set that is immutable (so that you cannot add or remove items),
you can use the frozenset() function:

myset = frozenset([1, 2, 3])

You can still use the same operations on frozensets as normal sets, except you
cannot modify them once they are created.

Chapter 6

Defining Functions and
Conditional Execution

6.1 Introduction
We have used a number of Python functions so far, such as the absolute value
function and the square root function. In this chapter we will learn how we can
create our own functions. We will also learn how to use conditional statements
inside functions.

6.2 Structure of a Function
We will start off learning how to program a very basic function. Consider the
function that returns its input plus one. Mathematically the function would be
represented as:

𝑓(𝑥) = 𝑥 + 1
So 𝑓(0) = 1, 𝑓(1) = 2 and 𝑓(2) = 3 and so on. In Python we can create this
function with:

def add_one(x):
y = x + 1
return y

The def tells Python we are creating a function. We then provide the functions
name (here add_one). After that we put in the function’s arguments in paren-
theses, separated by commas. Here there is only one argument so we just write
x. Then like with a for loop we add a : and add the body of the function

45

46CHAPTER 6. DEFINING FUNCTIONS AND CONDITIONAL EXECUTION

below it indented by 4 spaces. Here the only thing the function does is create y
which is x + 1. We then get the function to return the output, which is y.

Let’s try it out:

add_one(2)

3

We get the expected output!

One thing to note about this function is that the y that is assigned x + 1 in
the function is never stored in our environment. The y only exists within the
function and is deleted after the function ends. We cannot access it outside.
We say that y is a local variable (it is local to the function). It is possible to
define global variables within a function that can be accessed after the function
is called, but for our purposes doing so is generally not very good practice and
so we will not cover that here.

We could also shorten our code by doing the calculation on the same line as the
return command:

def add_one(x):
return x + 1

6.3 Commenting in Python
As we start to write longer programs that include functions, it’s s good idea to
start annotating your code to help other people understand its purpose (and
also you when you look back at your own code after a couple of days!). We can
do this by adding comments. In Python we can add a comment by using the #
character. Everything after the # character is ignored by the Python interpreter,
so what we write after it don’t need to be “legal” Python commands. We can
add a comment to describe what a function does like this:

This function returns the input plus one:
def add_one(x):

return x + 1

We can also add comments to the same line as code we want to run provided
we put it after the command. Like this:

2 ** 3 # this command calculates 2 to the power of 3

8

6.4. CONDITIONAL EXECUTION 47

6.4 Conditional Execution
6.4.1 If-Else Statements
Conditional statements, or “if-else statements”, are very useful and extremely
common in programming. In an if-else statement, the code first checks a partic-
ular true/false condition. If the condition is true, it performs one action, and if
the condition is false, it performs another action.

A simple example of this is the absolute value function we saw in Chapter 3.
Let’s define precisely what that function does:

|𝑥| = {−𝑥 if 𝑥 < 0
𝑥 otherwise

If 𝑥 < 0 it returns −𝑥, so that the negative number turns positive. Otherwise
(if 𝑥 = 0 or it is positive), it keeps the value of 𝑥 the same.

Although Python already has an absolute value function (abs()), let’s create
our own function (called my_abs()) that does the same thing. To do this we
use conditional statements (if and else). Here’s how it works:

def my_abs(x):
if x < 0:

y = -x
else:

y = x
return y

The function first checks if 𝑥 < 0. If it is true, it performs the operation under
if (sets 𝑦 = −𝑥) and skips past the else statement and returns 𝑦. If it is false
(i.e. 𝑥 ≮ 0) then it skips past the operation under the if statement and instead
does the operation under the else statement (sets 𝑦 = 𝑥) before returning 𝑦.

Let’s try it out using some different values:

[my_abs(i) for i in [-2, 0, 3]]

[2, 0, 3]

Just like with the add_one() function above we can shorten this function defi-
nition. We could alternatively do:

def my_abs(x):
if x < 0:

return -x
else:

return x

48CHAPTER 6. DEFINING FUNCTIONS AND CONDITIONAL EXECUTION

The function first checks if 𝑥 < 0. If it is true, it returns −𝑥 and ends. It
doesn’t go any further. If 𝑥 ≮ 0 then it skips the operation under if and does
the operation under else (returns 𝑥).

This gives the same output:

[my_abs(i) for i in [-2, 0, 3]]

[2, 0, 3]

This means the return part of a function doesn’t have to be at the end of a
function. But you should be aware that once a function returns a value it does
not continue executing the remaining statements.

For example, consider the following code:

def bad_add_one(x):
return x
y = x + 1
return y

[bad_add_one(i) for i in [1, 2, 3]]

[1, 2, 3]

This is very similar to the first add_one() function we defined above. The only
difference is that we write return x as the first command in the function’s body.
Although the code sets 𝑦 = 𝑥 + 1 and returns 𝑦, the output is always the same
as the input. This is because the function returns 𝑥 at the top, which means
the rest of the function is never executed.

6.4.2 If-Else If-Else Statements
Sometimes we want to do one thing if a certain condition holds, another thing
if a different condition holds, and something else in the remaining cases. An
example of this is the “sign” function, which tells you the sign in front of a
value:

𝑠𝑔𝑛(𝑥) =
⎧{
⎨{⎩

−1 if 𝑥 < 0
0 if 𝑥 = 0
+1 otherwise

If the value is negative, we get −1. If it’s zero we get 0. If it’s positive (the
remaining case), we get +1.

To do this in Python, we could nest several if-else statements:

def sign(x):
if x < 0:

return -1
else:

6.4. CONDITIONAL EXECUTION 49

if x == 0:
return 0

else:
return 1

[sign(i) for i in [-2, 0, 3]]

[-1, 0, 1]

The function does the following:

• If 𝑥 < 0, return −1.
• Otherwise proceed to the next if-else:

– If 𝑥 = 0, return 0.
– Otherwise (if 𝑥 > 0), return 0.

Although this works, this is quite complicated and difficult to follow. Some of
the return statements are indented 4 times, for what should be such a simple
function. For these kinds of situations we can make use of the elif statement.
Here is an alternative way to make this function using elif:

def sign(x):
if x < 0:

return -1
elif x == 0:

return 0
else:

return 1
[sign(i) for i in [-2, 0, 3]]

[-1, 0, 1]

In words, what the code does in this case is:

• If the 1st check is true (𝑥 < 0), the function returns −1 and it done.
• If the 1st check is false (𝑥 ≮ 0), the function checks 𝑥 = 0. If that is true

it returns 0 and it done.
• If the 1st and 2nd checks are false (𝑥 ≮ 0 and 𝑥 ≠ 0), the function returns

1 and it done.

It actually does exactly the same as the first code, but because there is less
nesting it is easier to follow and is preferred (especially when you have even
more conditions to check!).

6.4.3 While Loops
A while loop is another very common method in programming. A while loop
repeats a set of commands whenever a certain condition is true. A while loop
also makes it possible to run an infinite loop. To have the sequence of numbers
1, 2, 3, … printed on your screen forever (or until you kill the program) you could
do:

50CHAPTER 6. DEFINING FUNCTIONS AND CONDITIONAL EXECUTION

x = 0
while True:

x += 1
print(x)

Note: the x += 1 here is a shorter way of writing x = x + 1. The operations
-=, *= and /= also work like this - try them out!

Because True will always be True, the loop will just keep running forever, adding
1 each time. Eventually the numbers will get so big that x will show up as inf
(infinity), but you would have to let the program run for a very long time before
you saw that.

A while loop is also useful if you want to repeat a loop until something happens,
but you don’t know how many times you need to run it before that happens.
One instance when this would occur is if you wanted to numerically approximate
a mathematical equation with an iterative algorithm. You want to repeat the
iterations until the output starts to stabilize to a certain tolerance (accuracy)
level, but you don’t know in advance how many iterations this will take. Let’s
take a look at an example of this now.

The example we will look at is the way the ancient Greeks approximated square
roots. Suppose you wanted to find the square root of 𝑥. What the ancient
Greeks did is start with an initial guess of this 𝑦0, let’s say 𝑥

2 . You then find
the updated guess 𝑦1 according to the formula:

𝑦1 = 1
2 (𝑦0 + 𝑥

𝑦0
)

When you have 𝑦1 we can update this for a more accurate approximation with:

𝑦2 = 1
2 (𝑦1 + 𝑥

𝑦1
)

To write this in general terms, given an initial guess 𝑦0, we update 𝑦𝑛, with
𝑛 = 1, 2, … according to:

𝑦𝑛 = 1
2 (𝑦𝑛−1 + 𝑥

𝑦𝑛−1
)

You continue updating this way until 𝑦𝑛 stops changing very much (for example
it changes by less than 0.000001 in an iteration).

Let’s work manually with this algorithm to see how well it works. Suppose we
want the square root of 2 which we know is approximately equal to 1.414214.
Let’s start with a guess 𝑦0 = 𝑥

2 = 2
2 = 1. This is quite far off the true 1.414214

but we’ll go with it anyway. We can update the guess with the formula:

𝑦1 = 1
2 (𝑦0 + 𝑥

𝑦0
) = 1

2 (1 + 2
1) = 1.5

6.4. CONDITIONAL EXECUTION 51

This is already a lot closer (0.0858 away). Let’s do the next approximation step:

𝑦2 = 1
2 (𝑦1 + 𝑥

𝑦1
) = 1

2 (1.5 + 2
1.5) = 1.416667

This is already pretty close (0.00245 away)! Let’s do one more:

𝑦3 = 1
2 (𝑦2 + 𝑥

𝑦2
) = 1

2 (1.416667 + 2
1.416667) = 1.414216

It’s now only 0.0000021 away from the precise answer! That might be close
enough for most purposes, and we can always do another iteration to improve
its accuracy.

Let’s see how to code this in Python:

def my_sqrt(x, tol=0.000001):
Arguments:
x : number to take the square root of.
tol : tolerance level of algorithm.

Set initial guess:
y = x / 2

Initialize distance:
dist = tol + 1

Update guesses until y changes by less than tol:
while dist > tol:

Previous guess:
y_old = y
Update guess:
y = (y_old + x / y_old) / 2
Calculate distance from last guess:
dist = abs(y - y_old)

return y

We have written a function that can take 2 arguments: x, the number we want
to take the square root of, and tol, which is the tolerance level for how accurate
our approximation should be (a lower number is more accurate). When we write
tol=0.000001 in the function definition it means we say that 0.000001 is the
default value for tol. If we don’t provide the argument it will use this value,
but we can specify a different value if we want.

We now talk about the code in the function. The function first sets 𝑦0 = 𝑥
2 as the

initial guess. It also needs to set dist = tol + 1 because the while loop checks
if dist > tol. For this check, dist needs to exist locally in the function (tol
is created from the arguments). And for the while loop to run at least once the

52CHAPTER 6. DEFINING FUNCTIONS AND CONDITIONAL EXECUTION

dist needs to start at a value bigger than tol. This is why we add one. Inside
the while loop then, because we want to compare how our guess changes, we
set y_old = y before setting the new y according to the approximation formula.
Then we get the absolute value of the difference between the new and old guess.
We then go back to the top of the loop and we check if dist is still bigger than
tol. If it is, it repeats the steps again. If not, the while loop terminates and we
go to the next stage, where y is returned as the output.

Let’s try it out. First using the default value:

my_sqrt(2)

1.414213562373095

We get an approximation that is very close to math.sqrt(2):

import math
math.sqrt(2)

1.4142135623730951

Can we specify a looser tolerance as follows:

my_sqrt(2, 0.1)

1.4166666666666665

As expected, this is less accurate.

Chapter 7

Introduction to NumPy

7.1 Introduction
Python’s built-in data types like lists and tuples are not particularly well-suited
for mathematical operations. We will show three examples of computations that
we often need to do, and we will see that using lists involves quite a lot of coding
to get the tasks done. We will then see that NumPy can do these tasks very
efficiently.

7.2 Three Example Problems
Example 1
For the first example, suppose we have a list x of numbers and we want to double
each of the elements. We can’t use 2 * x because as we learned in Chapter 5
that just repeats the list twice. We have to do something like:

x = [2, 4, 8]
y = []
for i in x:

y.append(2 * i)
y

[4, 8, 16]

We create an empty list y. We then loop over the elements of x and append two
times the element to y. This is very clunky. A better way of doing this is using
a list comprehension:

x = [2, 4, 8]
[2 * i for i in x]

53

54 CHAPTER 7. INTRODUCTION TO NUMPY

[4, 8, 16]

But this is still a bit clunky. We would prefer a method that can just do 2 * x
and get the same output.

Example 2
Another example computation that we often need to do is if we have two lists
of numbers x and y with the same number of elements and and we want to
multiply them by each other element-by-element. Expressed in mathematical
notation, suppose we have two vectors of numbers 𝑥 and 𝑦:

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

and we want to calculate 𝑧 from this which is:

𝑧 = [𝑥1 × 𝑦2, 𝑥2 × 𝑦2, … , 𝑥𝑛 × 𝑦𝑛]
We can’t do x * y. That would return an error. But we could do this using a
for loop:

x = [2, 4, 8]
y = [3, 2, 2]
z = []
for i in range(len(x)):

z.append(x[i] * y[i])
z

[6, 8, 16]

Because we want to loop over the elements of both x and y, we have to loop
over the indices 0, 1, 2. We could have written for i in [0, 1, 2], but
range(len(x)) does this for us automatically (which is very useful if we have
a long list). To see better what range is doing we can do:

list(range(5))

[0, 1, 2, 3, 4]

We can see it creates a list from 0 up to but not including the argument.

We can improve on this code slightly by using the zip() function, which com-
bines several iterables into one iterable.

x = [2, 4, 8]
y = [3, 2, 2]
z = []
for i, j in zip(x, y):

z.append(i * j)
z

7.2. THREE EXAMPLE PROBLEMS 55

[6, 8, 16]

Similarly we can use zip() to do the task with a list comprehension:

x = [2, 4, 8]
y = [3, 2, 2]
[i * j for i, j in zip(x, y)]

[6, 8, 16]

Even though we have now shortened the command down to one line, this last
solution is still pretty clunky and also quite complicated. We would prefer an
operation where we can just do x * y.

Example 3
For the last example, suppose we want to find the median of a list of numbers.
Recall that if the length of the list of numbers is odd, then the median is just
the number in the middle when we sort the numbers. If the length of the list of
numbers is even, then the median is the average of the two numbers closest to
the middle when we sort the numbers.

We could create our own function to do this:

def median(x):
y = sorted(x)
if len(y) % 2 == 0:

return (y[len(y) // 2 - 1] + y[len(y) // 2]) / 2
else:

return y[len(y) // 2]

The function first sorts the list. The sorted() function gives the sorted list
as the output. We do this instead of x.sort() because otherwise the function
would sort our input list globally which we may not want it to do. The if
len(y) % 2 == 0: checks if the length of the list is even. If it is even it takes
the average of the element with index len(y) // 2 - 1 (just left of the middle)
and the element with index len(y) // 2 (just right of the middle). We use //
to ensure the division returns an integer instead of a float. If the length of the
list is odd it returns the element with index len(y) // 2. Because len(y) /
2 is not an integer when len(y) is odd we use // to round down.

Let’s test it out:

median([2, 6, 4])

4

median([2, 6, 4, 3])

3.5

56 CHAPTER 7. INTRODUCTION TO NUMPY

We get the expected ouptut. However, this is quite complicated. We wouldn’t
want to have to code this function every time we wanted to do something as
common as finding the median.

We will see that functions from the module numpy can solve each of these prob-
lems (and a lot more) very easily.

7.3 Importing the NumPy Module
We can import the numpy module using import numpy like with other modules.
However it is conventional to load NumPy the following way:

import numpy as np

This way we can use the functions from NumPy with the shorter np instead
of having to type numpy out in full every time. Doing this shortcut is okay
because so many people do it that it’s easy for people to read. You can load
other modules with shortcuts in a similar way, but you should follow the normal
conventions when you can.

NumPy works with arrays. An array is like a list but all elements must be of
the same type (such as all floats). We can create an array using NumPy’s array
function. Because we can shorten numpy to np, we can create an array with the
function np.array() like this:

import numpy as np
x = np.array([2, 4, 8])
x

array([2, 4, 8])

We will now show the power of NumPy by doing all the previous examples with
very little code.

7.4 Solving the Example Problems with NumPy
Example 1
To double every number in array:

x = np.array([2, 4, 8])
2 * x

array([4, 8, 16])

Example 2
To multiply the elements of two arrays element-by-element:

7.5. MATRIX OPERATIONS 57

x = np.array([2, 4, 8])
y = np.array([3, 2, 2])
x * y

array([6, 8, 16])

Example 3
To get the median of an array:

x = np.array([2, 6, 4])
np.median(x)

4.0

x = [2, 6, 4, 3]
np.median(x)

3.5

The np.median() function also works if we just provide a list instead of an
np.array:

np.median([2, 6, 4, 3])

3.5

These are just a few examples of how NumPy can simplify coding drastically.

For many programming tasks we need to do, it’s very often many people had
to do the same thing before. This means there is often a module available that
can do the task. Of course we learn a lot from coding functions from scratch,
but in order to complete a task quickly and efficiently it is usually better to use
the modules made for the task.

7.5 Matrix Operations
NumPy can also do matrix operations very easily. For example, suppose we had
two 3 × 3 matrices 𝐴 and 𝐵:

𝐴 = ⎛⎜
⎝

1 2 3
2 3 1
3 1 3

⎞⎟
⎠

𝐵 = ⎛⎜
⎝

2 1 2
3 2 1
1 3 1

⎞⎟
⎠

and wanted to calculate their product 𝐶 = 𝐴𝐵.

Manually, we could calculate each row 𝑖 and column 𝑗 of 𝐶 with ∑3
𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑗.

58 CHAPTER 7. INTRODUCTION TO NUMPY

For example, row 2 and column 1 of 𝐶 would be:

𝑐21 =
3

∑
𝑘=1

𝑎2𝑘𝑏𝑘1

= 𝑎21𝑏11 + 𝑎22𝑏22 + 𝑎23𝑏33
= 2 × 2 + 3 × 3 + 1 × 1
= 4 + 9 + 1
= 14

But doing this for all 9 elements would take a long time, and we could easily
make a mistake along the way. Let’s use Python to calculate it instead.

If we were to try and do this with only built-in Python commands, it would
still be rather complicated. We could define the matrices 𝐴 and 𝐵 using nested
lists, where each list contains 3 lists representing the rows:

A = [
[1, 2, 3],
[2, 3, 1],
[3, 1, 3]

]

B = [
[2, 1, 2],
[3, 2, 1],
[1, 3, 1]

]

To calculate 𝐶 = 𝐴𝐵 then we follow the same approach as the manual way.
We loop through each row 𝑖 and each column 𝑗 of the matrix and calculate:
𝑐𝑖𝑗 = ∑3

𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑗. We do this by starting with a zero matrix and progressively
fill it up.

C = [
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]

]

for i in range(3):
for j in range(3):

for k in range(3):
C[i][j] += A[i][k] * B[k][j]

for row in C:
print(row)

7.5. MATRIX OPERATIONS 59

[11, 14, 7]
[14, 11, 8]
[12, 14, 10]

This is an example of a triple-nested loop: a loop inside a loop inside a loop.

Using NumPy to do the multiplication is much easier. We can just use the
np.dot() function:

import numpy as np
A = np.array(A)
B = np.array(B)
np.dot(A, B)

array([[11, 14, 7],
[14, 11, 8],
[12, 14, 10]])

NumPy can also do many other matrix operations, such as:

• transposing with the command np.transpose()
• inversion with the command np.linalg.inv().

You can therefore use Python to help you with the Mathematics course that
you are taking alongside this one!

60 CHAPTER 7. INTRODUCTION TO NUMPY

Chapter 8

Mathematics and plotting

In this chapter we will see some mathematical algorithms from the scipy pack-
age (or module) as well as how to visualize data, e.g., some of the figures we
have seen in earlier chapters, using matplotlib.

SciPy is a package that can be used to perform various mathematical task and
algorithms, making it very important for data anlaysis purposes. The Matplotlib
package is essential in Python to create insightful visual representations of your
data and the analysis you performed on it.

We first discuss two fundamental mathematical tasks: finding a root of a math-
ematical function and minimizing a mathematical function. After that, we will
explain how to visualize data and mathematical functions.

8.1 Root finding
Consider the function 𝑓(𝑥) = 𝑥2 + 2𝑥 − 1. A visualization of this function is
given below. We will learn how to create this figure ourselves in Section 8.3.

import numpy as np
import matplotlib.pyplot as plt

Define the x range
x = np.linspace(-3, 3, 600)

Define the function f
def f(x):

return x**2 + 2*x -1

Create the plot
plt.figure(figsize=(6, 4))

61

62 CHAPTER 8. MATHEMATICS AND PLOTTING

plt.plot(x, f(x), label='$f(x) = x^2 + 2x - 1$')

Add labels and title
plt.title('Plot of the function f on the interval [-3,3]')
plt.xlabel('x')
plt.ylabel('f(x)')

Add a grid
plt.grid(True)

Set range
plt.xlim(-3,3)
plt.ylim(-4,14)

Add a legend
plt.legend()

Show the plot
plt.show()

3 2 1 0 1 2 3
x

4

2

0

2

4

6

8

10

12

14

f(x
)

Plot of the function f on the interval [-3,3]
f(x) = x2 + 2x 1

A common task is to find a root 𝑥 of a mathematical function 𝑓 ∶
ℝ → ℝ. A root is a point that satisfies the equation

𝑓(𝑥) = 0.

8.1. ROOT FINDING 63

In our case, we want to solve the equation 𝑥2 +2𝑥−1 = 0. You might remember
from your high school math course that, for given numbers a, b and c, the roots
of the quadratic function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, are given by

𝑥ℓ = −𝑏 −
√

𝑏2 − 4𝑎𝑐
2𝑎 and 𝑥𝑟 = −𝑏 +

√
𝑏2 − 4𝑎𝑐

2𝑎

where the subscript ℓ is used to denote the fact that this will be the “left” root
and 𝑟 to denote the “right” root.

For 𝑓(𝑥) = 𝑥2+2𝑥−1, we have 𝑎 = 1, 𝑏 = 2 and 𝑐 = −1. Plugging in these values
in the formula above gives 𝑥ℓ = −1−

√
2 ≈ −2.4142 and 𝑥𝑟 = −1+

√
2 ≈ 0.4142.

Although this is an easy way to find the roots of a quadratic function, we want
to be able to find roots of any function 𝑓 , assuming they exist.

The easiest way to find a root of a general function is to use the the function
fsolve() from the (sub)package scipy.optimize. This package contains many
functions to carry out algorithmic tasks on mathematical functions. In order
not having to write scipy.optimize the whole time we will import this package
under the name optimize, just as we did with NumPy where we used the
line import numpy as np. Below is the code snippet that carries out the root
finding procedure.

import scipy.optimize as optimize

def f(x):
return x**2 + 2*x - 1

guess = 3
f_zero = optimize.fsolve(f,guess)

print("A root of the function f is given by", f_zero)

A root of the function f is given by [0.41421356]

In chronological order, this code does the following:

• Import the optimize (sub)package from the scipy package.
• Define 𝑓(𝑥) = 𝑥2 + 2𝑥 − 1 as a Python function (Chapter 6).
• Use optimize.fsolve(f,guess) so that Python knows that we want to

use the function fsolve() from optimize.
• The argument that is returned by fsolve() is assigned to the variable

f_zero.
• Print a message containing the root of 𝑓 that was found.

The use of fsolve() requires some additional explanation. It takes two input
arguments, the first one being a (mathematical) function f and the second one
an initial guess for where a root of 𝑓 might be, which we store in the variable

64 CHAPTER 8. MATHEMATICS AND PLOTTING

guess. Note that you cannot reverse the order of the input arguments: f_zero
= optimize.fsolve(guess,f) does not work!

We could also have used optimize.fsolve(f,3) instead of separately defining
guess = 3 and then using guess as input argument. However, when coding, it
is common practice to always define input data (the number 3 in this case) in a
separate variable. Especially if the number would be used in multiple places in
your code, this is useful.

It is important to observe that a Python function can itself be an input argument
of another Python function! That is, the function f is an input argument of
the function fsolve(). It is required to define the 𝑓 as a Python function.
That is, it is not possible to use the command optimize.fsolve(x**2 + 2*x
- 1,guess).

The second input argument guess is needed by fsolve() to execute the under-
lying mathematical root finding method that is used to find a root of 𝑓 . We
do not go into the actual mathematical method that is being carried out in the
background by Python when we execute fsolve()1, but the idea is that the
method starts at the guess that we provide and then gradually finds its way to
a root of 𝑓 by doing various calculations.

In fact, the choice of initial guess can influence the outcome of fsolve(). That
is, a different initial guess can lead the underlying mathematical method to a
different root of the function. This is illustrated in the code below, where we
find the other root −2.4142....
guess = -2
f_zero = optimize.fsolve(f,guess)

print("A root of the function f is given by", f_zero)

A root of the function f is given by [-2.41421356]

As you might have noted, the output of optimize.fsolve(f,guess)
is a list containing one number, for example, the last piece of code re-
turned [-2.41421356]. If you instead only want to output the number
-2.41421356, i.e., the value of the element in the string, you can use
optimize.fsolve(f,guess)[0] instead. This means that what is stored in
f_zero is the 0-th (and only) element of the list optimize.fsolve(f,guess).

guess = -2
f_zero = optimize.fsolve(f,guess)[0]

print("A root of the function f is given by", f_zero)
1In fact, there exist many root finding methods. A very famous one is Newton’s method

developed by Isaac Newton, a famous sciencist that you might have heard of. The reason
why there are so many root finding methods is that some work better than others on a given
function 𝑓. There are other ways to do root finding in Python that allow you to specify a root
finding method yourself, but this is a more advanced topic beyond the scope of this course.

8.1. ROOT FINDING 65

A root of the function f is given by -2.414213562373095

We can also use root finding to solve other types of equations. Suppose we want
to compute an 𝑥 such that

𝑓(𝑥) = 6.

Moving the 6 to the left, we see that this is the same as computing an 𝑥 such
that 𝑓(𝑥) − 6 = 0. Therefore, if we define the function 𝑔(𝑥) ∶= 𝑓(𝑥) − 6, then
an 𝑥 that satisfies 𝑔(𝑥) = 0 also satisfies 𝑓(𝑥) = 6, and vice versa. Let us code
this as well.

def g(x):
return f(x) - 6

guess = 4
f_zero = optimize.fsolve(g,guess)[0]

print("A number x satisfying f(x) = 6, is given by", f_zero)

A number x satisfying f(x) = 6, is given by 1.82842712474619

The function 𝑔 works as follows: It computes 𝑓(𝑥) by running the function 𝑓
with the input 𝑥, and then substracting 6 from it. Note that we could have also
defined 𝑔 by returning x**2 + 2x - 1 - 6. It is, however, more convenient
to just write f(x) - 6 here, because we have already defined the function 𝑓
earlier. Also, if we would change the definition of the function 𝑓 , the function
𝑔 is automatically updated as well.

Everything we have seen up till now also allows us to write a general Python
function to solve an equation of the form

𝑓(𝑥) = 𝑐

for a given function 𝑓 and number 𝑐. In the example above, we had 𝑐 = 6.

def solve_eq(f,c,guess):
"""
Input

f : A mathematical function taking as input a variable x,
c : The right hand side value of the equation f(x) = c,
guess : The initial guess for fsolve().

Returns

A value x solving f(x) = c.
"""

def g(x):

66 CHAPTER 8. MATHEMATICS AND PLOTTING

return f(x) - c

x = optimize.fsolve(g,guess)[0]
return x

The function above takes as input the function 𝑓 , the number 𝑐 and an initial
guess that fsolve() can use. Let us try out solve_eq() on some input data.
The goal will be to solve the equation

3𝑥2 − 4𝑥 + 1 = 5.
#We create the function h(x) = 3x^2 - 4x + 1
def h(x):

return 3*x**2 - 4*x + 1

#Right hand side of the equation h(x) = 5
d = 5

#Our initial guess for fsolve() (we choose 1 here).
initial_guess = 1

print("A solution x to h(x) = d is given by", solve_eq(h,d,guess))

A solution x to h(x) = d is given by 2.0

Note that the input arguments h, d and initial_guess need not have the
same names as the local variables f, c and guess in the function solve_eq().
What is important is that we input the arguments in the correct order in which
we want them to be identified with the local variables. That is, by doing
solve_eq(h,d,guess) Python knows that we want to assign the first input
argument h to the first local variable f, the second input argument d to the
second local variable c, and the third input argument initial_guess to the
local variable guess.

8.2 Minimization
Another fundamental task in mathematics is to find the minimum value that a
function can attain. Recall the function 𝑓(𝑥) = 𝑥2 + 2𝑥 − 1 from the previous
section.

import numpy as np
import matplotlib.pyplot as plt

Define the x range
x = np.linspace(-3, 3, 600)

Define the absolute value function

8.2. MINIMIZATION 67

def f(x):
return x**2 + 2*x -1

Create the plot
plt.figure(figsize=(6, 4))
plt.plot(x, f(x), label='$f(x) = x^2 + 2x - 1$')

Add labels and title
plt.title('Plot of the function f on the interval [-3,3]')
plt.xlabel('x')
plt.ylabel('f(x)')

Add a grid
plt.grid(True)

Set range
plt.xlim(-3,3)
plt.ylim(-4,14)

Add a legend
plt.legend()

Show the plot
plt.show()

68 CHAPTER 8. MATHEMATICS AND PLOTTING

3 2 1 0 1 2 3
x

4

2

0

2

4

6

8

10

12

14

f(x
)

Plot of the function f on the interval [-3,3]
f(x) = x2 + 2x 1

It can be seen that the point x at which the function 𝑓 is the lowest, i.e., attains
its minimum is 𝑥 = −1, and the function values in that point is 𝑓(−1) = −2.
Python has various ways of finding the minimum of a function, the easiest-to-use
being fmin() from the optimize module.

The syntax that is used for this function is similar to that of fsolve(). Although
we already defined the function 𝑓 in the previous section, we will redefine it in
the code below for sake of completeness.

import scipy.optimize as optimize

def f(x):
return x**2 + 2*x - 1

guess = 1
minimum = optimize.fmin(f,guess)

print('The minimum of the function f is attained at x = ', minimum)

Optimization terminated successfully.
Current function value: -2.000000
Iterations: 19
Function evaluations: 38

The minimum of the function f is attained at x = [-1.]

Note that Python outputs some information in the console about the mathemat-

8.3. VISUALIZATION 69

ical optimization procedure that was performed in order to find the minimum
of the function. It displays the function value at the miminum that was found,
in our case −2 = 𝑓(−1), and a number of iterations and function evaluations.
These last two pieces of information are not relevant for us, but are useful for
an expert who wants to understand better how well the optimization proce-
dure performed. If you want, you can suppress all this information by adding
disp=False or disp=0 as an argument to the fmin() function. This is illustrated
below.

minimum = optimize.fmin(f,guess,disp=False)

print('The minimum of the function f is attained at x = ', minimum)

The minimum of the function f is attained at x = [-1.]

Also here, if you want to return only the value -1.0 instead of the list [-1.0]
you can do the following as we illustrated for fsolve() as well.

minimum = optimize.fmin(f,guess,disp=False)[0]

print('The minimum of the function f is attained at x = ', minimum)

The minimum of the function f is attained at x = -1.0000000000000018

8.3 Visualization
In this section we will explain the basics for plotting functions and data, for
which we will use the matplotlib.pyplot (sub)package. We import it under
the name plt. You might wonder why we use the name plt and not the perhaps
more obvious choise plot. This is because plot() is a command that we will
be using, so we do not want to create any conflicts with this function when
executing a Python script.

In this section we will explain step-by-step how to generate the figure that we
have seen in the previous two sections. We start with plotting the function
𝑓(𝑥) = 𝑥2 + 2𝑥 − 1 for some values of 𝑥 in a two-dimensional figure.

import numpy as np
import matplotlib.pyplot as plt

Define the function f
def f(x):

return x**2 + 2*x -1

Define the x range of x-values
x = np.array([-3,-2,-1,0,1,2,3])

Compute the function values f(x[i]) of the elements x[i]

70 CHAPTER 8. MATHEMATICS AND PLOTTING

and store them in the array y
y = f(x)

#Create the figure
plt.figure()

Create the plot
plt.plot(x, y)

Show the plot
plt.show()

3 2 1 0 1 2 3
2

0

2

4

6

8

10

12

14

You can view the figure in the Plots pane (or tab) in Spyder.

If the resolution of the plots in the Plots pane is bad, you can increase
it by going to “Tools > Preferences > IPython console > Graphics >
Inline backend > Resolution” and set the resolution to, for example,
300 dpi.

You can get the Plots pane in fullscreen by going to the button
with the three horizontal lines in the top right corner and choose
“Undock”. You can “Dock” the pane again as well if you want to
leave the fullscreen mode.

8.3. VISUALIZATION 71

Figure 8.1: IPython Console

We will next explain what the code above is doing. After defining the function
𝑓 , we create the vector (i.e., Numpy array)

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7] = [−3, −2, −1, 0, 1, 2, 3].

We then compute the function values 𝑓(𝑥𝑖) for 𝑖 = 1, … , 7 and story these in
the vector 𝑦. This might seem a bit strange. We defined the vector 𝑓 as being
a function that takes as input a number 𝑥 and outputs the number 𝑓(𝑥), but
now we are inputting a whole vector of numbers 𝑥 into the function 𝑓 . Python
is capable of handling this, and deals with this by returning the function value
for every element of the vector 𝑥. That is, it will output the vector

[𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), 𝑓(𝑥4), 𝑓(𝑥5), 𝑓(𝑥6), 𝑓(𝑥7)] = [2, −1, −2, −1, 2, 7, 14].

We call 𝑓 a vectorized function: At first glance, it is defined to have a single
number as input, but it can also handle a vector as input, in which case it
returns the function evaluation for every element of the vector. This typically
only works when x is defined to be a Numpy array. If we would have defined
x = [-3,-2,-1,0,1,2,3] as a list of numbers, the code would have given an
error (try this yourself!).

If you use mathematical functions or functions from Numpy, Scipy or
Matplotlib, it is best to store numerical input data for these functions
in Numpy arrays (and not lists).

Next, we create an (empty) figure using the command plt.figure(). Then
comes the most important command, plt.plot(x,y), that plots the elements
in the vector 𝑥 against the elements in the vector 𝑦 = 𝑓(𝑥), and connects con-
secutive combinations (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) with a line segment. For example,

72 CHAPTER 8. MATHEMATICS AND PLOTTING

we have (𝑥1, 𝑦1) = (−3, 2) and (𝑥2, 𝑦2) = (−2, −1). The left most line segment
is formed by connecting these points.

If you only want to plot the points (𝑥𝑖, 𝑦𝑖), and not the line segments, you can
use plt.scatter(x,y) instead of plt.plot(x,y).

import numpy as np
import matplotlib.pyplot as plt

Define the function f
def f(x):

return x**2 + 2*x -1

Define the x range of x-values
x = np.array([-3,-2,-1,0,1,2,3])

Compute the function values f(x[i]) of the elements x[i]
and store them in the array y
y = f(x)

#Create the figure
plt.figure()

Create the plot
plt.scatter(x, y)

3 2 1 0 1 2 3
2

0

2

4

6

8

10

12

14

Observe that the (blue) line in the figure that was generated using

8.3. VISUALIZATION 73

plt.plot(x,y) is not as “smooth” as in the figures in the previous sec-
tions, where the function does not (visibly) have these segments. To get a
smoother function line, we can include more points in the vector 𝑥.

A quick way to generate a number 𝑘 of evenly spaced points in the interval [𝑎, 𝑏]
is the command np.linspace(a,b,k) from the Numpy package. It takes as
input the bounds of the interval [𝑎, 𝑏] and the number of points 𝑘 that we want
to have in it. Consider the following example, where we want to generate 𝑘 = 11
points in the interval [𝑎, 𝑏] = [0, 1].

import numpy as np

x = np.linspace(0,1,11)

print(x)

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

Note that the end points of the interval form the first and last element in the
vector 𝑥. “Evenly spaced” refers to the fact that the distance between two
consecutive points in 𝑥 is always the same. For this 𝑥 this common distance is
0.1 = (𝑏 − 𝑎)/(𝑘 − 1).

Let us plot again the function 𝑓 , but this time with 600 elements in 𝑥 in the
interval [−3, 3]. We use plt.plot() again, instead of plt.scatter(). We now
obtain a much smoother function line.

import numpy as np
import matplotlib.pyplot as plt

Define the function f
def f(x):

return x**2 + 2*x -1

Define the x range of x-values
x = np.linspace(-3,3,600)

Compute the function values f(x[i]) of the elements x[i]
and store them in the array y
y = f(x)

#Create the figure
plt.figure()

Create the plot
plt.plot(x, y)

74 CHAPTER 8. MATHEMATICS AND PLOTTING

3 2 1 0 1 2 3
2

0

2

4

6

8

10

12

14

You can add a legend for the line/points that you plot by using the label argu-
ment of plt.plot(). For example we can add the function description using
plt.plot(x,y,label='$f(x) = x^2 + 2x - 1$'). This is in particular use-
ful if you plot multiple functions in one figure, as the example below illustrates.
There we plot the functions 𝑓 and 𝑔, with 𝑔(𝑥) = 3𝑥 a new function. To have
the labels appear in the legend of the figure, you need to add a legend to the
figure with plt.legend().

If you want to add labels to the horizontal and vertical axis, you can use the
commands plt.xlabel() and plt.ylabel().

import numpy as np
import matplotlib.pyplot as plt

Define the function f
def f(x):

return x**2 + 2*x -1

Define the function g
def g(x):

return 3*x

Define the x range of x-values
x = np.linspace(-3,3,600)

Compute the function values f(x[i]) of the elements x[i]
and store them in the array y

8.3. VISUALIZATION 75

y = f(x)
z = g(x)

#Create the figure
plt.figure()

Create the plot
plt.plot(x, y, label='$f(x) = x^2 + 2x - 1$')
plt.plot(x, z, label='$g(x) = 3x$')

Create labels for axes
plt.xlabel('x')
plt.ylabel('Function value')

Create the legend with the specified labels
plt.legend()

3 2 1 0 1 2 3
x

10

5

0

5

10

15

Fu
nc

tio
n

va
lu

e

f(x) = x2 + 2x 1
g(x) = 3x

You might observe that the range on the vertical axis changed now that we
added a second function to the plot. When we only plotted the function 𝑓 , the
vertical axis ranged from −2 to 14, but now with the function 𝑔 added to it, it
ranges from −10 to 15.

You can fix the range [𝑐, 𝑑] on the vertical axis using the command
plt.ylim(c,d), and to fix the range of the horizontal axis to [𝑎, 𝑏], you
can use plt.xlim(a,b). In the figure below, we fix the vertical range to
[𝑐, 𝑑] = [−10, 14] and the horizontal axis to [𝑎, 𝑏] = [−3, 3].

76 CHAPTER 8. MATHEMATICS AND PLOTTING

import numpy as np
import matplotlib.pyplot as plt

Define the function f
def f(x):

return x**2 + 2*x -1

Define the function g
def g(x):

return 3*x

Define the x range of x-values
x = np.linspace(-3,3,600)

Compute the function values f(x[i]) of the elements x[i]
and store them in the array y
y = f(x)
z = g(x)

#Create the figure
plt.figure()

Create the plot
plt.plot(x, y, label='$f(x) = x^2 + 2x - 1$')
plt.plot(x, z, label='$g(x) = 3x$')

Create labels for axes
plt.xlabel('x')
plt.ylabel('Function value')

Create the legend with the specified labels
plt.legend()

Fix the range of the axes
plt.xlim(-3,3)
plt.ylim(-10,14)

8.3. VISUALIZATION 77

3 2 1 0 1 2 3
x

10

5

0

5

10

Fu
nc

tio
n

va
lu

e

f(x) = x2 + 2x 1
g(x) = 3x

Finally, you can also add a title to the plot using the command plt.title()
as well as a grid in the background of the figure using plt.grid(). These are
illustrated in the figure below.

import numpy as np
import matplotlib.pyplot as plt

Define the function f
def f(x):

return x**2 + 2*x -1

Define the function g
def g(x):

return 3*x

Define the x range of x-values
x = np.linspace(-3,3,600)

Compute the function values f(x[i]) of the elements x[i]
and store them in the array y
y = f(x)
z = g(x)

#Create the figure
plt.figure()

Create the plot

78 CHAPTER 8. MATHEMATICS AND PLOTTING

plt.plot(x, y, label='$f(x) = x^2 + 2x - 1$')
plt.plot(x, z, label='$g(x) = 3x$')

Create labels for axes
plt.xlabel('x')
plt.ylabel('Function value')

Create the legend with the specified labels
plt.legend()

Fix the range of the axes
plt.xlim(-3,3)
plt.ylim(-10,14)

Add title to the plot
plt.title('A first plot in Python of two functions')

Add grid to the background
plt.grid()

3 2 1 0 1 2 3
x

10

5

0

5

10

Fu
nc

tio
n

va
lu

e

A first plot in Python of two functions
f(x) = x2 + 2x 1
g(x) = 3x

This completes the description of how to plot figures like those we saw in the pre-
vious two sections. As a final remark, there are many more plotting options that
we do not cover here. For example, with the plt.xticks() and plt.yticks()
commands you can specify the numbers you want to have displayed on the hor-

8.3. VISUALIZATION 79

izontal and vertical axis, respectively. Also, there are commands to specify line
color, width, type (e.g., dashed) and much more! You do not need to know this,
but feel free to play around with such commands!

80 CHAPTER 8. MATHEMATICS AND PLOTTING

Chapter 9

Data handling with Pandas

In this chapter, we will go over some of the basics of importing, adjusting and
exporting data in Python. For the adjusting part, we will rely on the Pandas
package, which is a data analysis package. We start by explaining how to use
Pandas data frames, a convenient way to store large datasets. Afterwards, we
will explain how you can import data from a file into a data frame, and how to
export it to another file.

The Pandas package pandas is typically imported under the alias pd.

import pandas as pd

9.1 Data frames
We will start with a small data set consisting of six persons and some personal
information about these people. The data is given in the following dictionary. It
contains the names, height, weight, age and dietary preference (i.e., dictionary
keys) of everyone.

dataset = {
'name' : ["Aiden", "Bella", "Carlos", "Dalia", "Elena", "Farhan"],
'height (cm)' : [185, 155, 190, 185, 160, 170],
'weight (kg)' : [80, 60, 100, 85, 62, 75],
'age (years)' : [23, 23, 23, 21, 19, 25],
'dietary preference' : ['Veggie','Veggie','None','None','Vegan','None']

}

print(dataset.keys())

dict_keys(['name', 'height (cm)', 'weight (kg)', 'age (years)', 'dietary preference'])

A dictionary is not a convenient datatype to perform data analysis on. Therefore,

81

82 CHAPTER 9. DATA HANDLING WITH PANDAS

we load the data into a so-called dataframe using the DataFrame() function from
pandas.

data_frame = pd.DataFrame(dataset)

print(data_frame)

name height (cm) weight (kg) age (years) dietary preference
0 Aiden 185 80 23 Veggie
1 Bella 155 60 23 Veggie
2 Carlos 190 100 23 None
3 Dalia 185 85 21 None
4 Elena 160 62 19 Vegan
5 Farhan 170 75 25 None

As you can see here, the keys of the dictionary become the column names of
the data frame, and the values are stored in the corresponding column. You
can also see the index of the row at the far left. Because we have a relatively
small data set, the complete data frame is printed. If the data contains a large
number of rows, typically the first and last five rows are printed in the console
of Spyder. A data frame is an object of the type DataFrame with which you can
do all kinds of things.

print(type(data_frame))

<class 'pandas.core.frame.DataFrame'>

9.1.1 Accessing
If you want to print the first or last 𝑘 rows, you can use the func-
tions frame_name.head(k) and frame_name.tail(k), respectively, with
frame_name the name of the data frame.

Print first three rows of data_frame
print(data_frame.head(3))

name height (cm) weight (kg) age (years) dietary preference
0 Aiden 185 80 23 Veggie
1 Bella 155 60 23 Veggie
2 Carlos 190 100 23 None

Print last two rows of data_frame
print(data_frame.tail(2))

name height (cm) weight (kg) age (years) dietary preference
4 Elena 160 62 19 Vegan
5 Farhan 170 75 25 None

It is also possible to access specific rows or elements from the data frame using
indexing.

9.1. DATA FRAMES 83

To extract row 𝑖, use frame_name.loc[i].

Extract row 0 (i.e., info of Aiden)
x = data_frame.loc[0]

print(x)

name Aiden
height (cm) 185
weight (kg) 80
age (years) 23
dietary preference Veggie
Name: 0, dtype: object

To extract a specific column, use frame_name.loc[:,'column_name'].

Extract age column (i.e., info of Aiden)
x = data_frame.loc[:,'age (years)']

print(x)

0 23
1 23
2 23
3 21
4 19
5 25
Name: age (years), dtype: int64

An alternative that not uses the loc[] function is frame_name[column_name].

Extract age column (i.e., info of Aiden)
x = data_frame['age (years)']

print(x)

0 23
1 23
2 23
3 21
4 19
5 25
Name: age (years), dtype: int64

To extract from row 𝑖 the entry in column ‘column_name’ use frame_name.loc[i,column_name].

Extract the name and height from the person on row 0
x = data_frame.loc[0,'name']
y = data_frame.loc[0,'height (cm)']

print("The height of", x, "is", y, "cm.")

84 CHAPTER 9. DATA HANDLING WITH PANDAS

The height of Aiden is 185 cm.

We can also use slicing to return a specified range of rows. For example, rows 𝑖
through 𝑗 can be obtained using frame_name.loc[i:j].

Extract first three rows
x = data_frame.loc[1:3]

print(x)

name height (cm) weight (kg) age (years) dietary preference
1 Bella 155 60 23 Veggie
2 Carlos 190 100 23 None
3 Dalia 185 85 21 None

A notable different with slicing in lists is that if we want the first, second AND
third element of a list then we use [1:4]. This is because the last element of
the specified range (4 in this case) is not included when using slicing in lists.

Slicing in list
y = [13,4,5,2,11]

Print first, second and third element of y
print(y[1:4])

[4, 5, 2]

Using slicing, we can also access specific combinations of columns and rows.
Suppose we are only interested in the name, height and age of the first, second
and third person in the frame. Because the columns have names (i.e., are not
numbers), we index them by a list containing the colunmn names that we are
interested in.

Extract block with rows 1-3 and columns name, height and age.
x = data_frame.loc[1:3,['name','height (cm)', 'age (years)']]

print(x)

name height (cm) age (years)
1 Bella 155 23
2 Carlos 190 23
3 Dalia 185 21

It is also possible to return a subset of rows that do not form a consective block.
You can do this with a Boolean vector indicating for every row whether you
want it to be included or not. For example, if we want to return only rows
0, 1, 4 and 5, we can do the following:

rows = [True,True,False,False,True,True]
x = data_frame.loc[rows]

9.1. DATA FRAMES 85

print(x)

name height (cm) weight (kg) age (years) dietary preference
0 Aiden 185 80 23 Veggie
1 Bella 155 60 23 Veggie
4 Elena 160 62 19 Vegan
5 Farhan 170 75 25 None

Here rows is a Boolean list containing entries True and False with an element
being True if and only if we want the row to be included (namely 0, 1, 4 and 5),
and False otherwise (namely 2 and 3). We can achieve the same result with
data_frame.loc[[0,1,4,5]], i.e, by giving a list of the row entries that we are
intersted in.

The Boolean list approach is convenient, because it can also be used to select
rows that satisfy a specified criterion. For example, suppose that we want to
only select the rows of persons whose dietary preference is ‘None’. This can be
achieved as follows.

Boolean vector no_pref indicating whether dietary preference is 'None'
no_pref = data_frame['dietary preference'] == 'None'
print(no_pref)

0 False
1 False
2 True
3 True
4 False
5 True
Name: dietary preference, dtype: bool

Extract rows for which list no_pref has 'True' entry
x = data_frame.loc[no_pref]

print(x)

name height (cm) weight (kg) age (years) dietary preference
2 Carlos 190 100 23 None
3 Dalia 185 85 21 None
5 Farhan 170 75 25 None

The expression data_frame['Dietary preference'] == 'None' checks for ev-
ery row in the dietary preference column data_frame['Dietary preference']
whether its entry is ‘None’. If so, it returns True, and otherwise False. We store
these True/False values in the list no_pref (short for having no dietary pref-
erence). We then use this Boolean list to extract the rows of the data frame
consisting of the persons whose dietary preference is None.

86 CHAPTER 9. DATA HANDLING WITH PANDAS

9.1.2 Editing
It is also possible to edit the data frame, both the data in the frame, as well as
the column and row names. For example, it might be that we start with data
that is not given in a dictionary, but rather in a matrix (which is a list of lists,
where each of the inner lists forms a row of the matrix).

data = [
[2,4,-1,2],
[5,1,2,9],
[3,7,8,9]
]

frame = pd.DataFrame(data)

print(frame)

0 1 2 3
0 2 4 -1 2
1 5 1 2 9
2 3 7 8 9

Note that in this case both the rows and columns have their index number
as name, so 0, 1 and 2 for the rows and 0, 1, 2 and 3 for the columns. The
names of the rows are stored in frame_name.index and the columns in
frame_name.columns.

Row names are stored in frame.index
print(frame.index)

RangeIndex(start=0, stop=3, step=1)

Rename rows
frame.index = ['Row0','Row1','Row2']

Access the row names
print(frame.index)

Index(['Row0', 'Row1', 'Row2'], dtype='object')

If you want to access specific column names, you can use indexing.

Print name of first column
print(frame.index[1])

Row1

Here is the complete frame with row names adjusted.

Print data frame
print(frame)

9.1. DATA FRAMES 87

0 1 2 3
Row0 2 4 -1 2
Row1 5 1 2 9
Row2 3 7 8 9

Next, let us adjust the colum names.

frame.columns = ['Col0','Col1','Col2','Col3']

print(frame)

Col0 Col1 Col2 Col3
Row0 2 4 -1 2
Row1 5 1 2 9
Row2 3 7 8 9

It is also possible to alter the entries within the frame.

Edit entry on row 1, column 2
frame.loc['Row1','Col2'] = 10

print(frame)

Col0 Col1 Col2 Col3
Row0 2 4 -1 2
Row1 5 1 10 9
Row2 3 7 8 9

You can also edit a complete row (or column)

Replace row 2
frame.loc['Row2',:] = [-2,-2,-2,-2]

print(frame)

Col0 Col1 Col2 Col3
Row0 2 4 -1 2
Row1 5 1 10 9
Row2 -2 -2 -2 -2

Replace column 2
frame.loc[:,'Col2'] = [-1,-1,-1]

print(frame)

Col0 Col1 Col2 Col3
Row0 2 4 -1 2
Row1 5 1 -1 9
Row2 -2 -2 -1 -2

It is also possible to edit the entries of an entire column by applying a function to
it using apply(). For example, suppose that we want to square all the numbers

88 CHAPTER 9. DATA HANDLING WITH PANDAS

in the second column. We can do this as follows.

def f(x):
return x**2

frame['Col1'].apply(f) does not overwrite the entries in Col1
so we have to do this ourselves
frame['Col1'] = frame['Col1'].apply(f)

print(frame)

Col0 Col1 Col2 Col3
Row0 2 16 -1 2
Row1 5 1 -1 9
Row2 -2 4 -1 -2

9.1.3 Adding data
It is also possible to add entire new rows and columns.

data = [
[2,4,-1,2],
[5,1,2,9],
[3,7,8,9]
]

Create frame out of data
frame = pd.DataFrame(data)

Name rows and columns
frame.columns = ['Col0','Col1','Col2','Col3']
frame.index = ['Row0','Row1','Row2']

print(frame)

Col0 Col1 Col2 Col3
Row0 2 4 -1 2
Row1 5 1 2 9
Row2 3 7 8 9

Next, we add a row to the data frame. The loc[] command uses for this adds
the row at the bottom of the current data frame.

Add a row
frame.loc['New row'] = [5,5,3,1]

print(frame)

Col0 Col1 Col2 Col3

9.2. MATHEMATICAL OPERATIONS 89

Row0 2 4 -1 2
Row1 5 1 2 9
Row2 3 7 8 9
New row 5 5 3 1

The same holds for adding a column, which is done as follows. Note that here
we use [:,'New column'] and not ['New column'], because the latter would
add the new data as a row.

frame.loc[:,'New column'] = [1,1,1,1]

print(frame)

Col0 Col1 Col2 Col3 New column
Row0 2 4 -1 2 1
Row1 5 1 2 9 1
Row2 3 7 8 9 1
New row 5 5 3 1 1

Adding a new column you can also do with the insert() function. This allows
you to specify at which position you want the column to be inserted. The
insert() function needs three arguments: a position 𝑖 where the column should
be inserted, the column name and the column data, so the syntax is something
like instert(i,column_name,column_data).

Insert column with name 'New column' at position 2.
frame.insert(2,'Inserted column', [10,10,10,10])

print(frame)

Col0 Col1 Inserted column Col2 Col3 New column
Row0 2 4 10 -1 2 1
Row1 5 1 10 2 9 1
Row2 3 7 10 8 9 1
New row 5 5 10 3 1 1

Adding a row at a specific position is also possible, but this is more involved
and omitted here.

9.2 Mathematical operations
It is also possible to obtain statistical information from numerical columns.

data = [
[2,4,-1,2,'hello'],
[5,1,2,9,'bye'],
[3,7,8,9,'hello'],
[3,5,8,9,'hi'],
[31,5,4,9,'hi'],

90 CHAPTER 9. DATA HANDLING WITH PANDAS

[3,7,8,5,'hello'],
]

Create frame out of data
frame = pd.DataFrame(data)

Name rows and columns
frame.columns = ['Col0','Col1','Col2','Col3','Col4']
frame.index = ['Row0','Row1','Row2','Row3','Row4','Row5']

print(frame)

Col0 Col1 Col2 Col3 Col4
Row0 2 4 -1 2 hello
Row1 5 1 2 9 bye
Row2 3 7 8 9 hello
Row3 3 5 8 9 hi
Row4 31 5 4 9 hi
Row5 3 7 8 5 hello

For example, we can compute the minimum, maximum and average value by
using the function min(), max() and mean(), respectively.

Minimum of the first column
min_col1 = frame.loc[:,'Col1'].min()

print(min_col1)

1

Maximum of the second column
max_col2 = frame.loc[:,'Col2'].max()

print(max_col2)

8

Mean of the zeroth column
mean_col0 = frame.loc[:,'Col0'].mean()

print(mean_col0)

7.833333333333333

It is also possible to count occurences of a given word (or number) using
value_counts()[word]. For example, suppose we want to count how often
the word 'hello' appears in the third column.

count_hello = frame.loc[:,'Col4'].value_counts()['hello']

print(count_hello)

9.2. MATHEMATICAL OPERATIONS 91

3

We can also to more advanced things like counting the total number of occur-
rences of every word in the fourth column. By having a quick look at the data,
we see that there are three distinct greetings, 'hello', 'hi' and 'bye', to be
found in the fourth column. A quick way to obtain these greetings in a list is
to use the unique() function. This function returns a list with all the unique
entries found in the specified column.

greetings = frame.loc[:,'Col4'].unique()

print(greetings)

['hello' 'bye' 'hi']

Next, we can loop over the greetings in the list greetings and apply the
value_counts() function to all of them. We store the results in a dictionary
whose keys are the greetings in greetings and whose values are the number of
times every greeting appears in the fourth column.

Create empty dictionary
occur_count = {}

for i in greetings:
occur_count[i] = frame.loc[:,'Col4'].value_counts()[i]

print(occur_count)

{'hello': 3, 'bye': 1, 'hi': 2}

It is usually insightful to visualize your data as well. In this case we can make
a bar plot using the bar() function of matplotlib.pyplot. It takes as input
two lists (or arrays), the first list being the labels that should appear under the
bars, and the second list the heights of the bars.

import matplotlib.pyplot as plt

Labels of the bars (keys of dictionary occur_count)
labels = occur_count.keys()
print(labels)

Heights of the bars (values of dictionary occur_count)
values = occur_count.values()
print(values)

Create figure
plt.figure()

Create bar plot
plt.bar(labels,values)

92 CHAPTER 9. DATA HANDLING WITH PANDAS

#Create title for plot
plt.title('Greeting occurrences')

dict_keys(['hello', 'bye', 'hi'])
dict_values([3, 1, 2])

Text(0.5, 1.0, 'Greeting occurrences')

hello bye hi
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Greeting occurrences

9.3 Importing and exporting data
Data is typically provided in an external file, for example, a comma-separated
values (CSV) file. You can download the data that was given at the beginning
of this section here in and you should store in under the name dataset.csv.

csv_to_frame = pd.read_csv('dataset.csv')

print(csv_to_frame)

name height (cm) weight (kg) age (years) dietary preference
0 Aiden 185 80 23 Veggie
1 Bella 155 60 23 Veggie
2 Carlos 190 100 23 None
3 Dalia 185 85 21 None
4 Elena 160 62 19 Vegan

9.3. IMPORTING AND EXPORTING DATA 93

5 Farhan 170 75 25 None
6 Geert 178 80 25 Veggie

To test the code above in Spyder, you need to store the Python file that you
execute the code in, in the same folder as the file dataset.csv.

The function read_csv stores the data in the file dataset.csv. The first row
of the data is assumed to contain the names of the columns. If the data file
does not contain such a first row, we can import the data with the additional
argument header=None, meaning that we tell Python that there is no first row
containing the column names.

csv_to_frame = pd.read_csv('dataset.csv', header=None)

print(csv_to_frame)

0 1 2 3 4
0 name height (cm) weight (kg) age (years) dietary preference
1 Aiden 185 80 23 Veggie
2 Bella 155 60 23 Veggie
3 Carlos 190 100 23 None
4 Dalia 185 85 21 None
5 Elena 160 62 19 Vegan
6 Farhan 170 75 25 None
7 Geert 178 80 25 Veggie

Note that in the code above, the first row of the data is now included in the
data frame, instead of set to be the names of the columns. The columns are
now indexed by integers like the rows of the frame.

It is also possible to export an (adjusted) data frame to a comma-separated file.
Let us first add another row to the existing frame and then export it to a new
file called new_dataset.csv.

frame = pd.read_csv('dataset.csv')

Highest index in original frame is 5, so 6 is the index
at which we place the new row
frame.loc[6] = ['Geert',178, 80, 25, 'Veggie']

print(frame)

name height (cm) weight (kg) age (years) dietary preference
0 Aiden 185 80 23 Veggie
1 Bella 155 60 23 Veggie
2 Carlos 190 100 23 None
3 Dalia 185 85 21 None
4 Elena 160 62 19 Vegan
5 Farhan 170 75 25 None
6 Geert 178 80 25 Veggie

94 CHAPTER 9. DATA HANDLING WITH PANDAS

Now that we have added a new row, we can use the to_csv() function tho store
the frame in the new comma-separated file.

frame.to_csv('new_dataset.csv')

The folder in which you have stored the original dataset.csv file, as well as the
Python file in which the code is executed, should now contain a new file called
new_dataset.csv. If you open the file in, e.g., Notepad (Windows) or Excel, you
will see something like the following figure.

Figure 9.1: New data frame in .csv file

On the first line the column names can be found, and on the following lines the
data from the frame. However, Python also exported the row indices 0, 1, … , 6.
If you don’t want these indices to be included (they were also not contained in
the original .csv file), you can use the argument index=False in to_csv().

frame.to_csv('new_dataset_no_indices.csv', index=False)

This time the resulting file does not have the row indices at the beginning of
every line.

Figure 9.2: New data frame without row indices in .csv file

9.3. IMPORTING AND EXPORTING DATA 95

Instead of storing the data in a new file, we can also overwrite the original
dataset.csv file.

frame.to_csv('dataset.csv',index=False)

You should, however, be careful with overwriting files in this way. Always make
sure you have a copy of the data stored somewhere else, in case something goes
wrong!

96 CHAPTER 9. DATA HANDLING WITH PANDAS

Chapter 10

Object oriented
programming

Python is what is called an object oriented programming language. Almost
everything in Python is an object on which, e.g., functions can be applied.
Recall, for example, the Pandas data frames that we say in the last chapter: We
could change elements in the frame, compute summary statistics of its columns,
and modify its size.

Objects in Python are generated as instances of a class. Even something simple
as a decimal number is an object from a class. To figure out what class an object
is from, you can use the type() function.

x = 1.42

print(type(x)) # x is an object from the class float

<class 'float'>

To illustrate the concept of a class in more detail, we will create a class whose
objects model students. The class could, for example, be used to keep track
of the student administration at a school or university. You should think of a
class as a blueprint: It describes the type of information we keep track of of
every student, and how we can retrieve and manipulate it. The basic syntax
for creating a class is given by class class_name:. For example if we want to
create an (empty) class called Student we can do the following

class Student:
Here the code to create and manipulate objects would be given
pass

The pass command here is used because there is no further code in this class.
You could use it as a kind of temporary place holder if you know you are going

97

98 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

to create a class, but have not yet code to place into it.

10.1 Attributes
In general, to create an object of a class we need to have some basic information
of the object. For example, we can require that every student needs to have a
name, age and student number. These pieces of information, needed to create
an object of the class, are called attributes. We use a special function in Python
called __init__(), that can be used to so-called initialize an object. For the
student class with attributes name, age and student number (ID), this is done
as follows.

class Student:
This function initializes an object of the class Student
by setting the attributes (name, age and ID) of an object.
def __init__(self,name,age,student_number):

self.name = name
self.age = age
self.ID = student_number

In general, the __init__() function has a first input called self which you
should think of as representing an empty object that we are going to fill with
the student’s information. The other input arguments of __init__() are the
inputs for the attributes of the student.

The attributes we set by doing self.attribute_name = attribute_input,
where attribute_name is the name of the attribute (name, age and ID) here
and attribute_input the input arguments of the function __init__() (name,
age and student_number here).

Note that the variables we use for the input arguments of __init__() do not
have to be the same as the names of the attributes themselves. For exam-
ple, for the student number, we use the input argument student_number in
__init__(), but we set this argument to be the ID attribute (when we do
self.ID = student_number).

We next create an object (i.e., student) of the class with given inputs for the
attributes.

Creating an object (called stud) of the class Student
student1 = Student("Aidan",19,"2029912")

Print attributes of the object
print("Name of student is", student1.name)
print("Age of student is", student1.age)
print("Student number of student is", student1.ID)

Name of student is Aidan

10.2. METHODS 99

Age of student is 19
Student number of student is 2029912

The line student1 = Student("Aidan",19,"2029912") creates an object
(or instance) of the Student class called student1. The input arguments of
Student("Aidan",19,"2029912") are automatically passed to the (by every
class required) __init__() function, that is, name = "Aidan", age=19, and
student_number="2029912". You should think of student1 becoming the
local variable self in the __init__() function.

It is also possible to, after an object has been created, change its attributes.

Add last name of student as well
student1.name = "Aidan Amir"

print(student1.name)

Aidan Amir

10.2 Methods
In a class we define, next to __init__(), additional functions that can be used
to used to modify or obtain information of the student. Such function in a class
are called methods. The __init__() function is also strictly speaking a method
of the class.

As a first example, suppose we want to check if a student is of adult age (18
years or older). We can do this by adding the method adult() to the Student
class. The first input of such an additional function always should be self.
Next to that, there could also be additional arguments (we will give an example
of this later).

Note that there is a difference between how we access attributes and how we
apply methods: Attributes are accessed using object_name.attribute_name,
but functions are applied with object_name.method_name(), i.e., with brackets
() at the end.

class Student:
This method initializes an object of the class Student
by setting the attributes (name, age, and ID) of an object.
def __init__(self, name, age, student_number):

self.name = name
self.age = age
self.ID = student_number

def adult(self):
if self.age >= 18:

return print(self.name,"is an adult")

100 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

else:
return print(self.name,"is not an adult")

Create two Student objects
student1 = Student("Aidan",19,"2029912")
student2 = Student("Bella",17,"2034912")

Check whether students are adults
student1.adult()
student2.adult()

Aidan is an adult
Bella is not an adult

10.2.1 Input arguments
We also give an example of a method that takes additional input arguments
(next to self). Suppose we have a list of student numbers that have registered
for a course. We create a method reg_check that takes as input the list of
student numbers and checks whether a student (i.e., object) has registered or
not by inspecting whether or not the student number of the student is contained
in the list.

class Student:
This method initializes an object of the class Student
by setting the attributes (name, age, and ID) of an object.
def __init__(self, name, age, student_number):

self.name = name
self.age = age
self.ID = student_number

def adult(self):
if self.age >= 18:

return print(self.name,"is an adult")
else:

return print(self.name,"is not an adult")

def reg_check(self,registrations):
for i in registrations:

if(i == self.ID):
return print(self.name, "is registered")

return print(self.name, "is not registered")

student1 = Student("Aidan",19,"2029912")

course_A = ["2034757","2029912","2087645","2091234","2198765"]
course_B = ["2034757","2029915","2087645","2091234","2198765"]

10.2. METHODS 101

Aidan's student number is contained in list of course A
student1.reg_check(course_A)

Aidan's student number is not contained in list of course B
student1.reg_check(course_B)

Aidan is registered
Aidan is not registered

10.2.2 Updating attributes
We can also include more involved attributes in a class. For example, suppose
that we want to be able to keep track of the courses that a student is taking part
in. To achieve this, we create an extra attribute courses that is initialized as an
empty list in __init__(). In addition to this, we define a method addCourse()
that allows us to append a course to the courses list. We temporarily remove
the methods age and reg_check to not make the code too long.

class Student:
This method initializes an object of the class Student
by setting the attributes (name, age, and ID) of an object.
def __init__(self, name, age, student_number):

self.name = name
self.age = age
self.ID = student_number
self.courses = []

def addCourse(self,course_name):
return self.courses.append(course_name)

Note that the courses attribute is not obtained from an input argument of
__init__(). This is because we define it to be an empty list.

student1 = Student("Aidan",19,"2029912")

Initially the courses list is empty
print(student1.courses)

Add course Programming
student1.addCourse("Programming")
print(student1.courses)

Add course Linear Algebra
student1.addCourse("Linear Algebra")
print(student1.courses)

[]
['Programming']

102 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

['Programming', 'Linear Algebra']

Similarly, we can also define a method that can be used to delete a course.
Deleting an element from a list can be done using the remove function, that is
illustrated below.

x = ['Aidan','Bella','Charlie']
x.remove('Bella')

print(x)

['Aidan', 'Charlie']

Next, we give the class with the addition and deletion method for courses.

class Student:
This method initializes an object of the class Student
by setting the attributes (name, age, and ID) of an object.
def __init__(self, name, age, student_number):

self.name = name
self.age = age
self.ID = student_number
self.courses = []

This method adds a course to the list courses
def addCourse(self,course_name):

return self.courses.append(course_name)

This method deletes a course from the list courses
def delCourse(self,course_name):

return self.courses.remove(course_name)

student1 = Student("Aidan",19,"2029912")

Initially the courses list is empty
print(student1.courses)

Add course Programming
student1.addCourse("Programming")
print(student1.courses)

Add course Linear Algebra
student1.addCourse("Linear Algebra")
print(student1.courses)

Delete course Programming
student1.delCourse("Programming")
print(student1.courses)

10.2. METHODS 103

[]
['Programming']
['Programming', 'Linear Algebra']
['Linear Algebra']

10.2.3 Overview
To summarize, a class consists of an initialization method __init__() that
is mandatory and used to initialize objects/instances of a class by setting the
attributes of an object. Next to that, there can be other methods that either
can be used to manipulate and/or to derive properties of an object.

We can summarize the aspects of the Student class as follows.

class Student
Attributes name, age, student number, courses
Methods initialization, check age, check registration

add course, delete course

Import packages here if needed
...

Define class with all its methods here
class Student:

This method initializes an object of the class Student
by setting the attributes (name, age, and ID) of an object.
def __init__(self, name, age, student_number):

self.name = name
self.age = age
self.ID = student_number
self.courses = []

This method check if student is >= 18
def adult(self):

if self.age >= 18:
return print(self.name,"is an adult")

else:
return print(self.name,"is not an adult")

This method checks if ID is included in list registrations
def reg_check(self,registrations):

for i in registrations:
if(i == self.ID):

return print(self.name, "is registered")
return print(self.name, "is not registered")

104 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

This method adds a course to the list courses
def addCourse(self,course_name):

return self.courses.append(course_name)

This method deletes a course from the list courses
def delCourse(self,course_name):

return self.courses.remove(course_name)

Put here code to initialize objects.
student1 = Student("Aidan",19,"2029912")

Print attributes or test methods
...

It is important to separate your testing code from the class. All the methods
that form the class have to be indented under the class Student: line. Testing
code should come afterwards (when the complete class has been defined).

Furthermore, you have to be aware of the difference in syntax between accessing
an attribute of an object, or applying a method to it.

Print attributes with object_name.attribute_name
and NOT object_name.attribute_name()
print(student1.name) # Not print(student1.name())

Apply method with object_name.method_name()
and NOT object_name.method_name. The brackets () indicate
that you are applying a method. Additional input arguments
of the method are put in the brackets.
student1.adult()

Note that for the line above we don't use the print() statement,
because the adult() method itself returns a print() statement.

Aidan
Aidan is an adult

10.3 Inheritance
In Python you can also build classes on top of each other, so that the new class
inherit the attributes and methods of an old class. Suppose we start with a
simple class Person, whose objects are people that have a name and age. There
is also a method in this class that checks whether someone is an adult (18 years
or older).

10.3. INHERITANCE 105

class Person:
Initialize a person
def __init__(self, name, age):

self.name = name
self.age = age

Check if person is an adult
def adult(self):

if(self.age >= 18):
return print(self.name, "is an adult")

else:
return print(self.name, "is not an adult")

person1 = Person("Bella", 19)

Check if Bella is an adult
person1.adult()

Bella is an adult

Suppose we now also want to create a class Student, where every student object
has the attributes name, age and student number. We can do this by defining
this class from scratch, but we can also make more clever use of the class Person
that we already have created. Note that in terms of attributes, every student
(having age, name and student number) can be seen as a special case of a
person (having age and name), but not the other way around. In this case, we
call Person the parent class and Student the child class.

It is possible to define the class Student so that it automatically inherits the
attributes and methods of the class Person. To achieve this, we should put the
parent class in brackets of the new child class that we want to define, so in our
case we should define the Student class using class Student(Person). Let us
do this with Python code as well, where we in addition also set the student
number as attribute.

class Student(Person):
Initialize a student
def __init__(self, name, age, student_number):

Person.__init__(self,name,age)
self.ID = student_number

The class Student also needs an __init__() method, which takes as input all
the attributes that we want to set (age, name and student number). Instead
of using self.name = name and self.age = age to set the name and age of
a student, we call the __init__() function from the Person class with the line
Person.__init__(self,name,age) with arguments name and age.

You could, of course, argue that we might as well have typed self.name = name
and self.age = age here, but you should imagine that objects in Python can

106 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

have hundreds of attributes. If you are building classes on top of each other
with this number of attributes, calling the initialization method from a parent
class is much more efficient than setting all the attributes of an object from a
child class explicitly again.

After having created an object from the class Person with the line
Person.__init__(self,name,age), theryby setting the name and age
of the student, we, in addition, set the student number with self.ID =
student_number.

student1 = Student("Bella",19,"20143576")

print(student1.name, student1.age, student1.ID)

Bella 19 20143576

We can also check is the student is an adult by using the adult() method from
the class Person. Because we defined the class Student to be the child of the
parent class Person, we can use this method right away also on objects of the
class Student.

Check if Bella is an adult
student1.adult()

Bella is an adult

10.4 Mathematical example
In this section we will define a class whose objects are two-dimension rectangles
in the two-dimensional plane ℝ2, and we define some methods do derive proper-
ties from these rectangles. An example of a rectangle in ℝ2, with corner points
(1, 3), (4, 3), (4, 1), (1, 1) is given below.

import numpy as np
import matplotlib.pyplot as plt

Define the x range
x_coord = [1,4,4,1,1]
y_coord = [1,1,3,3,1]

Create the plot
plt.figure(figsize=(6, 4))
plt.plot(x_coord, y_coord,linewidth=3)

Add labels and title
plt.title('A rectangle with corners $(1,3), (4,3), (4,1), (1,1)$')

Add a grid

10.4. MATHEMATICAL EXAMPLE 107

plt.grid(True)

Set range
plt.xlim(0,5)
plt.ylim(0,4)

Set ticks
plt.xticks([0,1,2,3,4,5])
plt.yticks([0,1,2,3,4])

Show plot
plt.show()

0 1 2 3 4 5
0

1

2

3

4
A rectangle with corners (1, 3), (4, 3), (4, 1), (1, 1)

To keep things simple, we assume that the rectangles never appear at an angle,
but always with the horizontal and vertical sides parallel to the horizontal and
vertical axis, respectively.

We should first think about how we want to represent a rectangle in Python, i.e.,
what will the attributes of a rectangle object of the class be? There are many
possibilities here, for example, we could explicitly choose four corner points, that
together form the rectangle, as its attributes. This would require eight input
numbers: four 𝑥-coordinates and four 𝑦-coordinates.

A more efficient way of doing this is to store the coordinates of the upper-

108 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

left corner point, the height, and the width of the rectangle (only four input
numbers). In the example above the upper-left corner point is (4, 1), the height
of the rectangle is 2, and the width is 3. Note that this information is enough
to derive the locations of the other corner points, i.e., (4 + width, 1), (4, 1 −
height), (4 + width, 1 − height).
class Rectangle:

Here corner is the upper-left corner point which
should be a list containing the x- and y-coordinate.
def __init__(self, corner, height, width):

self.corner= corner
self.height = height
self.width = width

Note that we assume that the upper left corner is given in a list whose first
entry is the 𝑥-coordinate of the upper left corner, and whose second entry is the
𝑦-coordinate. This is merely a modeling choice; we could also have defined two
separate attributes for the 𝑥- and 𝑦-coordinate.

rectangle1 = Rectangle([1,3],2,3)

Print upper left corner of the rectangle
print(rectangle1.corner)

[1, 3]

10.4.1 Methods
We will next define three methods that can be used to compute explicitly the
corner points of the rectangle, its area and its circumference.

Let us start with the area (width times height) and circumference (two times
width plus two times height) of the rectangle. Note that these are relatively
straightforward to compute these given that the width and height of a rectangle
object are two of its attributes.

class Rectangle:
Here corner is the upper-left corner point which
should be a list containing the x- and y-coordinate.
def __init__(self, corner, height, width):

self.corner= corner
self.height = height
self.width = width

Compute area
def area(self):

return self.width*self.height

Compute circumference

10.4. MATHEMATICAL EXAMPLE 109

def circumference(self):
return 2*self.width + 2*self.height

rectangle1 = Rectangle([1,3],2,3)

Compute and print list of corner points of the rectangle
area1 = rectangle1.area()
circumference1 = rectangle1.circumference()

print("The area of the rectange is", area1)
print("The circumference of the rectange is", circumference1)

The area of the rectange is 6
The circumference of the rectange is 10

We continue with the corner points method corners(); we leave out the area
and circumference method from the code to keep the code snippet short.

If we know that the left upper corner point is located at [𝑥, 𝑦] then the upper-
right corner is [𝑥 + width, 𝑦], the lower-right corner [𝑥 + width, 𝑦 − height], and
the lower-left corner [𝑥, 𝑦 − height]. We will write a method that returns these
points, including the upper-left corner, in a list (restulting in a list of lists as all
the corner points themselves will be lists of two elements).

class Rectangle:
Here corner is the upper-left corner point which
should be a list containing the x- and y-coordinate.
def __init__(self, corner, height, width):

self.corner= corner
self.height = height
self.width = width

Compute corner points: the output has the points in the
order [upper-left, upper-right, lower-right, lower-left]
def corners(self):

up_right = [self.corner[0] + self.width, self.corner[1]]
low_right=[self.corner[0]+self.width,self.corner[1]-self.height]
low_left = [self.corner[0], self.corner[1] - self.height]
return [self.corner, up_right, low_right, low_left]

rectangle1 = Rectangle([1,3],2,3)

Compute and print list of corner points of the rectangle
corners1 = rectangle1.corners()
print(corners1)

[[1, 3], [4, 3], [4, 1], [1, 1]]

110 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

10.4.2 Plotting method
We conclude this section with a method that can be used to plot a rectangle in
a two-dimension plane, like the figure given at the beginning of this section. For
the plotting method, we also make use of the method to determine the corner
points, so this is included in the class below as well. The following code will be
explained below.

import matplotlib.pyplot as plt

class Rectangle:
Here corner is the upper-left corner point which
should be a list containing the x- and y-coordinate.
def __init__(self, corner, height, width):

self.corner= corner
self.height = height
self.width = width

Compute corner points: the output has the points in the
order [upper-left, upper-right, lower-right, lower-left]
def corners(self):

up_right = [self.corner[0] + self.width, self.corner[1]]
low_right=[self.corner[0]+self.width,self.corner[1]-self.height]
low_left = [self.corner[0], self.corner[1] - self.height]
return [self.corner, up_right, low_right, low_left]

Plot the rectangle
def plotting(self):

plt.figure()

Obtain corner points of the rectangle using corners()
c = self.corners()

Define two lists: x-coordinates and y-coordinates
x_coord = [c[0][0],c[1][0],c[2][0],c[3][0],c[0][0]]
y_coord = [c[0][1],c[1][1],c[2][1],c[3][1],c[0][1]]

Define ranges (margin of 3 around the rectangle)
plt.xlim(self.corner[0]-3,self.corner[0] + self.width + 3)
plt.ylim(self.corner[1]- self.height - 3,self.corner[1] + 3)

Create the plot
plt.plot(x_coord, y_coord)
return

rectangle1 = Rectangle([1,3],2,3)

10.4. MATHEMATICAL EXAMPLE 111

Corner points of the rectangle
corners1 = rectangle1.corners()
print(corners1)

Plot the rectangle
rectangle1.plotting()

[[1, 3], [4, 3], [4, 1], [1, 1]]

2 1 0 1 2 3 4 5 6 7
2

1

0

1

2

3

4

5

6

To be able to plot, we first import the matplotlib.pyplot package under the
usual alias plt. We then define the class Rectangle, whose __init__() and
corners methods are the same as before.

We continue with explaining the plotting() method. The method first creates
an empty figure using plt.figure() and determines the corner points of the
rectangle using the corners() method. They are stored stored in the variable
c. Because c is a list of lists, we can access the 𝑥-coordinate of the 𝑖-th corner
point in the list with c[i][0], and the 𝑦-coordinate with c[i][1].

Recall that the plot() function plots two lists/arrays 𝑥 = [𝑥1, … , 𝑥𝑛] and 𝑦 =
[𝑦1, … , 𝑦𝑛] against each other by plotting the points (𝑥𝑖, 𝑦𝑖) and then connecting
them with line segments. To plot a rectangle, we therefore define

𝑥 = [𝑥upper-left, 𝑥upper-right, 𝑥lower-right, 𝑥lower-left, 𝑥upper-left]
in the list x_coord and

𝑦 = [𝑦upper-left, 𝑦upper-right, 𝑦lower-right, 𝑦lower-left, 𝑦upper-left].

112 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

in the list y_coord.

Note that the command plt.plot(x_coord,y_coord) first draws the point
(𝑥upper-left, 𝑦upper-left), then (𝑥upper-right, 𝑦upper-right), etc. and connects them. It
is important that we include the upper-left point at the end again so that the
left vertical side of the rectangle is drawn as well.

Finally, we also set the range of the horizontal and vertical axis with the xlim()
and ylim() functions. We include a margin of 3 around the box. To see
how this works for the horizontal axis, note that self.corner[0] contains
the 𝑥-coordinate of the upper-left point, and self.corner[0] + width that
of the upper-right point. Therefore, to create a margin of 3 on both sides of
the rectangle, we let the hortizontal axis range from self.corner[0] - 3 to
self.corner[0] + width + 3.

10.4.3 Overview
The complete class of the previous subsections, containing all the methods that
we set up, is given below.

import matplotlib.pyplot as plt

class Rectangle:
Here corner is the upper-left corner point which
should be a list containing the x- and y-coordinate.
def __init__(self, corner, height, width):

self.corner= corner
self.height = height
self.width = width

Compute area
def area(self):

return self.width*self.height

Compute circumference
def circumference(self):

return 2*self.width + 2*self.height

Compute corner points: the output has the points in the
order [upper-left, upper-right, lower-right, lower-left]
def corners(self):

up_right = [self.corner[0] + self.width, self.corner[1]]
low_right=[self.corner[0]+self.width,self.corner[1]-self.height]
low_left = [self.corner[0], self.corner[1] - self.height]
return [self.corner, up_right, low_right, low_left]

Plot the rectangle

10.4. MATHEMATICAL EXAMPLE 113

def plotting(self):
plt.figure()

Obtain corner points of the rectangle using corners()
c = self.corners()

Define two lists: x-coordinates and y-coordinates
x_coord = [c[0][0],c[1][0],c[2][0],c[3][0],c[0][0]]
y_coord = [c[0][1],c[1][1],c[2][1],c[3][1],c[0][1]]

Define ranges (margin of 3 around the rectangle)
plt.xlim(self.corner[0]-3,self.corner[0] + self.width + 3)
plt.ylim(self.corner[1]- self.height - 3,self.corner[1] + 3)

Create the plot
plt.plot(x_coord, y_coord)
return

114 CHAPTER 10. OBJECT ORIENTED PROGRAMMING

Chapter 11

Errors and debugging

While writing Python scripts, you probably have encountered the situation that
Python returned an error message, indicating that there is something wrong with
your code. When writing a script from scratch this will often happen. Roughly
speaking, most of the time that you spend on creating a working Python script
goes into correcting errors in the first draft of your code. This process is called
debugging.

In this chapter we will discuss different types of errors that Python might return,
as well as some general strategies that you might adopt in order to efficienctly
debug your code.

11.1 Error types
The three main types of errors that can occurs in Python are syntax, runtime
and logical errors. We will give some examples of each of these three errors in
the coming subsections.

11.1.1 Syntax error
A syntax error occurs when Python does not understand the words or characters,
i.e., syntax, that you use in your code. In more technical terms, Python is unable
to interpret the code that you wrote because you did not use the correct syntax.

x = "Hello'

Figure 11.1: SyntaxError

115

116 CHAPTER 11. ERRORS AND DEBUGGING

In the example above, we define a string x, but on the left we use a double
quote and on the right a single quote. This is not correct, we should either use
double quotes or single quotes on both sides. The output message indicates that
the error occurs on the first line of the code, although the term “unterminated
string literal” might not directly make sense to you.

Roughly speaking, Python tries say you started the creation of a string by using
the double quotes at the beginning, and is therefore expecting the string to be
concluded somewhere as well with double quotes, but this never happens. The
code should have been as follows.

x = "Hello"

Sometimes it is more obvious what is going wrong in your code. In the example
above, Python raises an error saying that the colon : is missing, which is needed
in order to define a function in Python.

Define the function f(x) = x^2
def f(x)

return x**2

Figure 11.2: SyntaxError

The code should have been as follows.

Define the function f(x) = x^2
def f(x):

return x**2

11.1.2 Runtime error
A runtime error occurs when Python runs (or executes) your code, but cannot
create any output because the operations you try to perform on the variables
that you defined are not possible. These errors are typically trickier than syntax
errors: It might be that on some input data, your code does exactly what you
want it to do, but on other input data it is not able to execute your code.

Consider the example below where we define a division function that takes as
input two numbers 𝑎 and 𝑏, and returns 𝑎/𝑏.

def division(a,b):
return a/b

a = 1

11.1. ERROR TYPES 117

b = 3
c = division(a,b)

print(c)

0.3333333333333333

This function works perfectly fine for the inputs a = 1 and b = 3. However, if
we we would take 𝑏 = 0, then Python raises a ZeroDivisionError, which indicates
that we are trying to divide by 0, which is mathematically not possible.

def division(a,b):
return a/b

a = 1
b = 0
c = division(a,b)

print(c)

Figure 11.3: ZeroDivisionError

Another common runtime error in the context of functions is a TypeError. Such
an errors occur when, you do not provide the correct number of input arguments
for a function. In the code below, we have forgotten to input the second variable
b that the function division() requires.

def division(a,b):
return a/b

d = 1
e = 3
f = division(d)

print(c)

118 CHAPTER 11. ERRORS AND DEBUGGING

Figure 11.4: TypeError

In the context of indexing or accessing data in, e.g., a list, a common runtime
error is the IndexError. Such an error occurs when you are, for example, trying
to access an element of a string that does not exist. In the example below the
list x has four elements. Since Python starts counting indices at 0, we have
x[0] = 2, x[1] = 1, x[2] = 6 and x[3] = 8. Therefore, x[4] does not exist
and so Python is not able to access it.

x = [2,1,6,8]

print(x[4])

Figure 11.5: IndexError

For scripts with classes, a common runtime error is an AttributeError which
occurs if you are trying to access an attribute of an object that does not exist.
In the below example, every student object has attributes name and age, but
not ID. The code executes correctly up to the last line, but the last line itself
gives an error.

class Student:
def __init__(self,name,age):

self.name = name
self.age = age

student1 = Student("Aidan",19)
print(student1.ID) # ID attribute does not exist

11.1. ERROR TYPES 119

Figure 11.6: AttributeError

11.1.3 Logical error
Arguably the most difficult to deal with are logical errors. These are errors that
are not raised by Python, but are errors in the logic of the code. For example,
a function that does not return the output it is supposed to return.

Consider the example below where the goal is to create a function that substracts
a number 𝑏 from another number 𝑎, i.e., the function is supposed to return 𝑎−𝑏.
The programmer made a mistake and instead, the function returns 𝑎+𝑏. There is
nothing wrong with the syntax of the function, nor does Python encounter issues
while running the code. However, the function does not what the programmer
wants it to do.

def substract(a,b):
#This function substracts the number b from a
return a + b

a = 1
b = 2
c = substract(a,b)

print(c) # Should be 1 - 2 = -1

3

In the example above, it is fairly easy to conclude that the function is not
behaving as it should, because almost all choices of 𝑎 and 𝑏 (excluding cases
where 𝑎 and/or 𝑏 or zero) will return the wrong output.

Sometimes, however, logical errors are harder to spot as a function might still
give the correct ouput for many input arguments.

As an example, suppose we want to create a function that can decided whether
two intervals [𝑎, 𝑏] and [𝑐, 𝑑], with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ and 𝑎 ≤ 𝑏, 𝑐 ≤ 𝑑 are overlapping
or not. If the first interval is [𝑎, 𝑏] lies completelely left of the interval [𝑐, 𝑑], i.e.,
if 𝑏 < 𝑐, then the intervals do not overlap.

def overlap(a,b,c,d):
if b < c:

120 CHAPTER 11. ERRORS AND DEBUGGING

return print("No overlap!")
else:

return print("There is overlap.")

a = 1
b = 3
c = 0.5
d = 3.4

overlap(a,b,c,d)

There is overlap.

However, this function does not always give the correct output, because it does
not account for the fact that the second interval [𝑐, 𝑑] might lie completely left
of the first interval [𝑎, 𝑏], in which case there is also no overlap.

def overlap(a,b,c,d):
This function check whether two intervals [a,b] and [c,d]
have overlap or not.
if b < c:

return print("No overlap!")
else:

return print("There is overlap.")

a = 1
b = 3
c = -3
d = -2

overlap(a,b,c,d) # Gives wrong output

There is overlap.

To avoid logical errors, it is recommended to always test your code and functions
on a diverse collection of input data.

11.2 Exceptions
Instead of having Python code crash due to an error, there is also the possibility
to “catch” certain errors directly in a function. This allows a programmer to
specify what should happen if a certain error occurs, without the whole code
crashing. You can do this with a try-except construction.

Let’s look at an example. We consider the function 𝑔 that computes the square
root of the first 𝑘 powers of a number 𝑥 and sums them up, i.e.,

11.2. EXCEPTIONS 121

𝑔(𝑥, 𝑘) =
√√√
⎷

𝑘
∑
𝑖=1

𝑥𝑘 = √𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑘.

Note that 𝑥 can be any number, but 𝑘 has to be an integer for the summation
to be well-defined. For example, for 𝑥 = 1.3 and 𝑘 = 3, we have 𝑔(1.3, 3) =
1.3 + 1.32 + 1.33 = 5.187.

import math

Define the function g(x,k)
def g(x,k):

sum = 0
Here we compute the sum
for i in range(k):

sum = sum + x**(i+1) # i + 1, because range() starts at 0
return math.sqrt(sum)

x = 1.3
k = 3
print(g(x,k))

2.2774986278810356

Multiple things can go wrong with trying to execute this function. For exam-
ple, we might input a number 𝑘 which is not an integer. This gives rise to a
TypeError, because the range() function only works for integer inputs.

x = 1.3
k = 2.1
g(x,k)

122 CHAPTER 11. ERRORS AND DEBUGGING

Figure 11.7: TypeError

Or we might input a number x for which the summation ∑𝑘
𝑖=1 𝑥𝑘 is negative,

in which case we cannot take the square root (recall that the square root of a
negative number does not exist).

x = -10
k = 3
g(x,k)

Figure 11.8: ValueError

To inform a user that tries to execute this function what goes wrong, we can
use a try-except construction. The rough outline of such a construction is as
follows.

try:
Some code that Python should execute

11.2. EXCEPTIONS 123

except SomeError:
If an error of the type SomeError occurs
then do ...

except AnotherError:
If an error of the type AnotherError
occurs, then do ...

A simple example, when trying to divide by zero, is given below.

try:
5/0

except ZeroDivisionError:
print("You cannot divided by zero.")

You cannot divided by zero.

Python will first try to execute the code under the try statement. If this gives
rise to an error (i.e., exception), then it will do as is specified under the except
statement of the error that was raised.

You can use the try-except construction also within a function. Let us do this
for the function 𝑔 above.

import math

Define the function g(x,k)
def g(x,k):

try:
sum = 0
Here we compute the sum
for i in range(k):

sum = sum + x**(i+1) # i + 1, because range() starts at 0
return math.sqrt(sum)

except TypeError:
return print("Parameter k should be an integer.")

except ValueError:
return print("Cannot take square root of negative power sum.")

x = 1.3
k = 2.1
g(x,k) # Gives TypeError because k not integer.

Parameter k should be an integer.

x = -10
k = 3
g(x,k) #Gives ValueError because power sum is negative.

Cannot take square root of negative power sum.

124 CHAPTER 11. ERRORS AND DEBUGGING

11.3 Debugging

The process of identifying and fixing errors (also known as bugs), is called
debugging. One of the reasons errors are called bugs goes back to a computer
that was built at Harvard University in 1947. At some point a moth got into
the computer, which were giant at the time (the computers not the moths), and
caused a piece of hardware to malfunction.

In general, there is no fixed recipe for how to debug a function that is not working
properly, but there are many ways to get more insights in what a function is
doing step-by-step, giving you the option to identify where something is going
wrong. These are especially useful when you are trying to fix logical errors.

Below we will give some examples of what you can do to get better insights
in what is going wrong in your function. This is by no means meant to be an
exhaustive list.

11.3.1 Use print() statements

One way to get some insight into what your function is doing, is to create print
statements in the code. Let us have another look at the example given above.

import math

Define the function g(x,k)
def g(x,k):

sum = 0
Here we compute the sum
for i in range(k):

sum = sum + x**(i+1) # i + 1, because range() starts at 0
return math.sqrt(sum)

x = 1.3
k = 3
print(g(x,k))

2.2774986278810356

11.3. DEBUGGING 125

Figure 11.9: TypeError

Python tells us that there is a math domain error, but it does not give any
explicit information about what went wrong. Given that we use the sum variable
as input for the square root function, it is a good idea to keep track of how
the sum argument changes throughout the execution of the function, especially
what its value is when we try to input it into the square root function. We use
a try-except construction to not have Python print the whole error code.

import math

Define the function g(x,k)
def g(x,k):

try:
sum = 0
Here we compute the sum
for i in range(k):

print("Sum at start iteration",i,":",sum) # Print here to see how sum changes
sum = sum + x**(i+1) # i + 1, because range() starts at 0

print("Sum after for-loop:", sum) # Print sum at end of for-loop
return math.sqrt(sum)

except ValueError:
return print("Something goes wrong")

x = -10
k = 3
print(g(x,k))

Sum at start iteration 0 : 0
Sum at start iteration 1 : -10

126 CHAPTER 11. ERRORS AND DEBUGGING

Sum at start iteration 2 : 90
Sum after for-loop: -910
Something goes wrong
None

From the execution it can be seen that the sum variable is negative right before
we try to use math.sqrt(sum). This is what causes the error: the value of sum is
outside of the domain of the square root function (the domain is all nonnegative
numbers for which the square root is well-defined).

The None printed at the end is the result of the final print statement
print(g(x,k)) which cannot be properly executed because g(x,k) has not
been computed.

11.3.2 Use assert

If we already would have had some suspicion that the sum variable being negative
is what is causing the error in the function 𝑔, we could have also checked this
quickly by adding the command assert sum >= 0 after the for-loop, instead of
adding the print() statements and the try-except construction. If the assertion
is not true, then Python raises an AssertionError.

import math

Define the function g(x,k)
def g(x,k):

sum = 0
Here we compute the sum
for i in range(k):

sum = sum + x**(i+1) # i + 1, because range() starts at 0
assert sum >= 0 # Check if sum is nonnegative
return math.sqrt(sum)

x = -10
k = 3
print(g(x,k))

11.3. DEBUGGING 127

Figure 11.10: AssertionError

We can also check the assertion with a try-except construction to avoid the
error being printed.

import math

Define the function g(x,k)
def g(x,k):

try:
sum = 0
Here we compute the sum
for i in range(k):

sum = sum + x**(i+1) # i + 1, because range() starts at 0
assert sum >= 0 # Check if sum is nonnegative
return math.sqrt(sum)

except AssertionError:
return print("The sum is negative; cannot compute square root.")

x = -10
k = 3
print(g(x,k))

The sum is negative; cannot compute square root.
None

11.3.3 Use Spyder debugger
Spyder also has the option to debug your code. What this means is that Spyder
allows you to execute the code line-by-line, therefore making it easier for you to
figure out at which specific line your function is running into trouble. We will
next explain the very basics of debugging in Spyder.

The first thing you should do is set a breakpoint somewhere. What will happen

128 CHAPTER 11. ERRORS AND DEBUGGING

is that Python will run your code until the moment it tries to execute the code
on the breakpoint line. The breakpoint you set by click just right of the line
number on which you want to place the breakpoint. It will then appear as a
red circle next to the line number.

Figure 11.11: Setting a breakpoint

After you have placed the breakpoint, you should go to Debug in the toolbar of
Spyder, and select Debug (Ctrl+F5).

Figure 11.12: Start debug mode

11.3. DEBUGGING 129

Then in the console you will see the following appearing, which indicated that
you have gone into debug mode. It shows that the current execution halted at
line 7, which is the line where we added the breakpoint. This is the start of the
for-loop.

Figure 11.13: Start debug mode

By pressing Ctrl+F10 (the Step option in the Debug tab), you can move one
line, i.e., step, down in the execution of the code. The current line that Python
is at, is denoted by the blue arrow pointing rightwards. Doing Ctrl+F10 a
couple of times, we reach line 9 at which point Python will print -10. This
finishes the execution of the for-loop for 𝑖 = 0. If you again press Ctrl+F10,
you will see that the arrow jumps back to line 7. This indicates that we again
start the for-loop, but now with 𝑖 = 1.

Lines that contain a print statement will have their content appear in the console.
Below you can see the output -10, arising from print(sum) on line 10 in the
round of the for-loop with 𝑖 = 0, 90 from the round of the for-loop with 𝑖 = 1,
and -910 from 𝑖 = 2. Recall that 𝑘 = 3 in this example, so the for-loop stops
after 𝑖 = 2 = 𝑘 − 1.

130 CHAPTER 11. ERRORS AND DEBUGGING

Figure 11.14: Start debug mode

In general, Python will go one-by-one through all the rounds of the for-loop, for
the values 𝑖 = 0, … , 𝑘 − 1. Afterwards, Python will continue with the return
statement on line 10. This line-by-line execution makes it possible to identify
the exact moment where your code is doing something wrong.

While doing line-by-line exectution in debugging mode, you can also keep track
of how variables in your code change in the variable explorer. This often also
gives insights into what your code is doing.

	About
	Welcome
	What is a Programming Language?
	Why Python?

	Getting Started
	Installing Anaconda
	Spyder
	Python Console
	Python Scripts

	Code Snippets in This Book

	Python as a Calculator
	Addition, Subtraction, Multiplication and Division
	Troubleshooting: ``Escaping'' in Python
	Exponentiation (Taking Powers of Numbers)
	Absolute value
	Square Roots
	Exponentials
	Logarithms
	Integer Division and The Modulus Operator

	Variables and Data Types for Single Values
	Variables
	Assigning Values to Variables
	Rules for Naming Variables

	Common Data Types for Single Values
	Integers
	Floating-Point Numbers
	Strings
	Boolean Values

	Logical and Comparison Operators
	Logical Operators
	Comparison Operators

	Type Conversion

	Data Types for Multiple Values
	Introduction
	Lists
	List Operations
	List Indexing
	List Slicing
	List Methods
	Iterating over Items in a List
	List Comprehensions
	List Membership
	Copying Lists

	Tuples
	Tuple Assignment

	Dictionaries
	Sets and Frozen Sets

	Defining Functions and Conditional Execution
	Introduction
	Structure of a Function
	Commenting in Python
	Conditional Execution
	If-Else Statements
	If-Else If-Else Statements
	While Loops

	Introduction to NumPy
	Introduction
	Three Example Problems
	Example 1
	Example 2
	Example 3

	Importing the NumPy Module
	Solving the Example Problems with NumPy
	Example 1
	Example 2
	Example 3

	Matrix Operations

	Mathematics and plotting
	Root finding
	Minimization
	Visualization

	Data handling with Pandas
	Data frames
	Accessing
	Editing
	Adding data

	Mathematical operations
	Importing and exporting data

	Object oriented programming
	Attributes
	Methods
	Input arguments
	Updating attributes
	Overview

	Inheritance
	Mathematical example
	Methods
	Plotting method
	Overview

	Errors and debugging
	Error types
	Syntax error
	Runtime error
	Logical error

	Exceptions
	Debugging
	Use print() statements
	Use assert
	Use Spyder debugger

